DOI QR코드

DOI QR Code

A study of Immobilizing Heavy metals by pellets manufactured from Coal tailings and Iron oxide

선탄경석(選炭硬石)과 광산화물(鑛酸化物)로 제조(製造)한 담체(擔體)의 중금속(重金屬) 불용화(不溶化) 특성연구(特性硏究)

  • Received : 2012.01.13
  • Accepted : 2012.02.06
  • Published : 2012.02.28

Abstract

Porous pellets for immobilizing heavy metals were manufactured from coal tailings and iron oxide powder. Coal tailings was pulverized and mixed with iron oxide powder. The mixed powder was granulated into spherical pellets and roasted. Over $1100^{\circ}C$, residual coal in coal tailings reduced iron oxide to ZVI(Zero-Valent Iron). The pellets have 34.63% of porosity, 1.31 g/mL of bulk density, and 9.82.urn median pore diameter. The pellets were reacted with synthetic solutions containing each heavy metals: arsenic(V), copper(II), chrome(VI), and cadmium(II), respectively. On the test of immobilizing heavy metal, the pellets made at $1100^{\circ}C$ were superior to the other pellets made under $1000^{\circ}C$. Immobilizing over 99.9% of 10ppm heavy metal solutions required I hour for arsenic, 2 hours for chrome, and 4 hours for copper. However, immobilizing capacity of cadmium was inferior to that of the other metals and it was decreased in reversely proportion to initial concentration of the solutions.

선탄경석을 환경개선물질로 순환자원화하기 위해 철산화물과 혼합하여 중금속 불용화제를 제조하고 이의 적정제조 조건과 중금속에 대한 불용화 성능을 평가하였다 선탄경석을 분쇄한 후 철산화물의 분말을 혼합하여 구형의 펠릿을 제조하고 이를 가열하여 중금속 불용화제를 제조하였다. 온도별로 가열한 결과, $1100^{\circ}C$부터 선탄경석에 함유된 탄질분에 의해 영가철이 생성되었다. 제조된 불용화제는 구형의 다공체로서 공극률은 34.63%, 겉보기 밀도는 1.31 g/mL, 공극의 평균크기는 9.82 ${\mu}m$로 측정되었다. 불용화제를 비소(V), 구리(II), 크롬(VI), 카드뮴(II)이 함유된 각각의 중금속 용액과 반응시킨 결과, 영가철이 생성된 $1100^{\circ}C$에서 제조된 펠릿이 중금속 불용화도가 높고 pH를 더 높이는 것으로 나타났다. 중금속농도 10 ppm의 용액을 99.9%이상 불용화하기까지 비소의 경우 1시간, 크롬의 경우 2시간, 구리의 경우 4시간이 필요하였다. 그러나 카드뮴의 경우 불용화도가 낮게 나타났고 중금속농도가 높을수록 불용화도가 더 낮아지는 것으로 나타났다.

Keywords

References

  1. Fields, K. Chen, A., Wang, L., 2000 : Arsenic removal from drinking water by iron removal plants, EPA report, EPA/600/R-00/086.
  2. Kanel, S.R., Manning, B., Charlet, L. and Choi, H., 2005 : Removal of arsenic(III) from groundwater by nanoscale zero-ValentiIron, Environ. Sci. Technol., 39(5), pp12911298.
  3. 전병훈, 김선준, 이상훈, 정우식, 2008 : 토양 및 지하수의 비소오염과 제거기술 동향, 광해방지기술, 2(1), pp3-13.
  4. Song, T., Ahn, J. and Kang, H., 1967 : Study on the utilization of coal-refuse: Fundamental studies on the production of fireproof material and lightweight aggregate from coal refuse (part 1), J. of the Korean Society for Geosystem Eng., 4, pp21-28.
  5. Hyun, J., Jeong, S. and Chae, Y., 2005 : Utilization of a coal-preparation refuse as a raw material for clay brick, J. of Korean Inst. of Resources Recycling, 14(4), pp3-9.
  6. Jeong, S., 2004 :, Effective utilization for the domestic coal refuse, Research Report of Korea Ins. Geosci. Mineral Res., KR-04(C)-19.
  7. Giasuddin, B. M. A., Kanel R. S., Choi H., 2007 : Adsorption of Humic Acid onto Nanoscale Zerovalent Iron and Its Effect on Arsenic Removal, Environ. Sci. Technol., 41(6), pp2022-2027. https://doi.org/10.1021/es0616534
  8. Lim J., Kim K., Lee, S., Kwon O., Yang J., Ok Y., 2010 : Stabilization of As (arsenic(V) or roxarsone) contaminated soils using zerovalent iron and basic oxygen furnace slag, Kor. Soc. Env. Eng., 32(6), pp631-638.
  9. William, R. R., Mitch, L., Jonathon, M., Gordon, M. P., 2004 : Arsenic Removal from Aqueous Solution via Ferrihydrite Crystallization Control, Environ. Sci. Technol., 38(8), pp2368-2372. https://doi.org/10.1021/es0353154
  10. Mouedhena, G., Fekia, M., Petris-Weryb, M,. Ayedi, H.F., 2009 : Electrochemical removal of Cr(VI) from aqueous media using iron and aluminum as electrode materials: Towards a better understanding of the involved phenomena, J. of Hazardous Materials, 168, pp. 983-991. https://doi.org/10.1016/j.jhazmat.2009.02.117
  11. Boparai, K. H., Joseph, M., O'Carroll, M. D., 2011 : Kinetics and thermodynamics of cadmium ion removal by adsorption onto nano-zerovalent iron particles, J. of Hazardous Materials, 186, pp458-465 https://doi.org/10.1016/j.jhazmat.2010.11.029