• Title/Summary/Keyword: Porous aluminum

Search Result 178, Processing Time 0.027 seconds

The Performance Characteristics of the Open Celled Aluminum Foam Applied for Heat Dissipation (다공성 알루미늄 방열핀의 성능특성 연구)

  • Kim, Jong-Soo;Lee, Hyo-Jin
    • Journal of the Korean Solar Energy Society
    • /
    • v.23 no.2
    • /
    • pp.91-98
    • /
    • 2003
  • Experimental study for a porous aluminum heat dissipator/or heat sink made by casting method is conducted to evaluate the performance of the porous aluminum heat sinks. The parameters applied for the present study are the manufacturing method. various bonding materials for the bottom plate of heat sink, and their different material, pore size, etc.. The casting method for porous aluminum heat sink is suggested for the best performance of heat dissipation in this experiment. The bottom plate applied by melting aluminum is introduced and proved their excellent characteristics compared with brazing, soldering, and bonding methods. In the present experiment, aluminum with different conductivities, such as AC8A and pure aluminum, are tested and the pure aluminums with the higher conductivity than AC8A shows their improvement of the performance. And the proper dimensions related to the pore size and the height of porous aluminum heat sinks are proposed in the present study.

A New Fabrication Method of Aluminum Nanotube Using Anodic Porous Alumina Film as a Template

  • Sung, Dae Dong;Choo, Myung Sook;Noh, Ji Seok;Chin, Won Bai;Yang, Woo Sung
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.8
    • /
    • pp.1159-1163
    • /
    • 2006
  • Aluminum nanotube has been fabricated by a physical vapor deposition/atmospheric pressure injection using an anodic porous alumina film as a template. The pore external-, and inside diameters and the length of the aluminum nanotubes fabricated by this method are 60 nm, 35 nm and 2 $\mu$m, respectively. The structure of the fabricated aluminum nanotubes was examined by a kind of chemical treatment as extraction of copper on the cross-sectional area of these aluminum tubes in a mixed solution of $CuCl_2$ and HCl by difference of ionization tendency between aluminum and copper. The composition of the aluminum nanotube was identified by the two dimensional Hybrid Plasma Equipment Model (HPEM) employing the inductively coupled plasma.

Structure of Oxide Film Prepared by Two-step Anodization of Aluminum

  • Ko, Eunseong;Ryu, Jaemin;Kang, Jinwook;Tak, Yongsug
    • Corrosion Science and Technology
    • /
    • v.5 no.4
    • /
    • pp.137-140
    • /
    • 2006
  • The effect of pre-existing barrier-type film on porous aluminum oxide film formation during anodization was investigated to control the uniform film growth rate. Initial potential fluctuations during anodization indicated that the breakdown of barrier-film is preceded before the porous formation and the induction time for the porous film growth increases with the increases of pre-existing film thickness. The porous film growth mechanism is lot affected by the presence of barrier film on aluminum surface. In parallel, uniform growth of barrier film underneath the porous structure was attained by two-step anodization processes.

Effect of Aluminum Purity on the Pore Formation of Porous Anodic Alumina

  • Kim, Byeol;Lee, Jin Seok
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.2
    • /
    • pp.349-352
    • /
    • 2014
  • Anodic alumina oxide (AAO), a self-ordered hexagonal array, has various applications in nanofabrication such as the fabrication of nanotemplates and other nanostructures. In order to obtain highly ordered porous alumina membranes, a two-step anodization or prepatterning of aluminum are mainly conducted with straight electric field. Electric field is the main driving force for pore growth during anodization. However, impurities in aluminum can disturb the direction of the electric field. To confirm this, we anodized two different aluminum foil samples with high purity (99.999%) and relatively low purity (99.8%), and compared the differences in the surface morphologies of the respective aluminum oxide membranes produced in different electric fields. Branched pores observed in porous alumina surface which was anodized in low-purity aluminum and the size; dimensions of the pores were found to be usually smaller than those obtained from high-purity aluminum. Moreover, anodization at high voltage proceeds to a significant level of conversion because of the high speed of the directional electric field. Consequently, anodic alumina membrane of a specific morphology, i.e., meshed pore, was produced.

Effects of Additives on the Microstructure and Mechanical Properties in Porous Aluminum Titanate Ceramics (각종 첨가제가 다공성 Aluminum Titanate Ceramics의 미세구조 및 기계적 특성에 미치는 영향)

  • 김병훈;나용한
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.2
    • /
    • pp.137-146
    • /
    • 1994
  • This experiments were focused on a modification of mechamical properties and structure in porous aluminum titanate ceramics by new additives which have been not researched yet. These were consisted of four kinds of additives i.e. Bi2O3, FeO, ZnO and NiO by addition amount of 1 wt% and 5 wt% respectively. The addition of Bi2O3 retarded a degree of syntehsis of aluminum titanate and accelerated in FeO, ZnO, NiO additives. Also, the most effective accelerator in synthesis of alunium titanate was FeO. A additives for the most effective of modification of microstructure, sharp distribtion of pore size and mechanical proterties was on ZnO addition and showed the lowest average pore size and narrowed pore size distribution. In order to improve of microstructure and pore size distribution in porous aluminum titanate ceramics was desired the addition amount of 1 wt% compare to 5 wt%.

  • PDF

Heat Transfer from a Porous Heat Sink by Air Jet Impingement (충돌공기제트에서의 다공성 방열기의 열전달 특성)

  • 백진욱;김서영;강병하
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.2
    • /
    • pp.73-79
    • /
    • 2001
  • Experiment were carried out to investigate the heat transfer characteristics of an aluminum foam block as a porous heat sink on a heat source by a vertical air jet impingement that can be applied for electronics cooling. The performance of the aluminum foam heat sink was evaluated by the convective heat transfer coefficient on the heat source. At a fixed porosity, pore density ($\beta$) of the foam and Reynolds number Re were varied in the range of $\beta$a=10, 20, 40 PPI(Pore Per Inch) and $850\leqRe\leq25000$. A nozzle diameter and the nozzle-to-plate spacing were also varied. It was found that the convective heat transfer was enhanced by the aluminum foam heat sink with lower pore density due to relatively intensified flow through the foam block. The aluminum foam block with much reduced weight shows slightly better performance with larger Nusselt number, compared with the convectional heat sink.

  • PDF

Fabrication of Porous Aluminum Oxide Using Flexible Thin Aluminum Foils (유연하고 얇은 알루미늄 포일을 사용한 다공성 알루미나 막 제작)

  • Park, Young-Ok;Kim, Seung-Woo;Kouh, Tae-Joon
    • Journal of the Korean Magnetics Society
    • /
    • v.17 no.2
    • /
    • pp.90-94
    • /
    • 2007
  • We have fabricated porous aluminum oxide using flexible and thin aluminum foils with thickness of 0.025 and 0.2 mm. These foils were anodized with 0.3 M oxalic acid solution after being electropolished with ethanol/perchloric acid. During the anodization, the temperature of the electrolyte was maintained at $9^{\circ}C$ and the anodization voltage was varied between 0.4 and 40 V The surface of the anodized aluminum oxide was studied with a scanning electron microscope. From the scanning electron micrograph, we observed that when the voltage applied was above 1 V for a long period of time, due to a strong electrolysis reaction in electrolyte, the surface of the anodized oxide was destroyed. However, when the anodization voltage was less than 1 V, the anodization process was very stable and lasted much longer. Our results show that for a thin aluminum foil, unlike a thick plate, one requires small anodization voltage less than 1 V to form a porous aluminum oxide for long anodization time.

A Study of Characteristics of the Wire-cut EDM Process in Aluminum Alloys (알루미늄합금의 와이어 컷 방전기공 특성에 과한 연구)

  • Lyu, Sung-Ki;An, Soon-Geon
    • Journal of the Korean Society of Safety
    • /
    • v.19 no.2
    • /
    • pp.21-25
    • /
    • 2004
  • This study deals with the characteristics of wire-cut EDM(Electrical Discharge Machining)process in aluminum alloys. Besides 2 series and 7 series of aluminum alloys for aerospace applications, porous aluminum is tested, which is used for sound absorbing matherial and interior and exterior material of building. Jinyoung JW-30 wire cutting machine was used in this experiment. Tap wate passed a filter and ionization was used as the discharging solution. An immerision method was applied as a cooling method because it separates chips effectively and machinability is good even with low value of electric current. The speed of fabrication was estimated by measuring the travel distance of the work piece and time spent for the movement. As pulse-on-time increased the fabrication speed decreased. On the other hand, as peak voltage of peak current increased the fabrication speed increased. In general 7075 aluminum alloy resulted in higher fabrication speed.

Porous Materials Based on Nickel and Aluminum

  • Dubinina, L.V.;Lopatin, V.U.;Narva, V.K.;Shugaev, V.A.;Vin, Tein
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.614-615
    • /
    • 2006
  • Investigation of influence the morphology of initial powder particles, application pore-formers for sintering of nickel powders and application of flux for sintering of aluminum was made. Using different methods was prepared material with size of porous in wide range size of pores ($1-500{\mu}m$). Using the flux for gravity sintering of aluminum in air atmosphere was manufactured porous material with porosity about 45%..

  • PDF