• Title/Summary/Keyword: Porous Flow Analysis

Search Result 236, Processing Time 0.028 seconds

Structural and Flow Analysis for Designing Air Plate of a Fuel Cell (구조 해석과 유동 해석을 통한 연료전지 공기판 설계)

  • Park, Jung-Sun;Yang, Ji-Hae;Lee, Won-Yong
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.585-590
    • /
    • 2003
  • The distributions of mass flow rate and pressure are major factors to deside the performance of a proton exchange membrane fuel cell (PEMFC). These factors are affected by channel configuration of air plate. In this paper. structural analysis is performed to investigate deformation of porous media. Two kind of models are suggest for flow analyses. Deformed porous media and undeformed porous media are considered for air plate model. The Numerical flow analysis results with deformed porous media and undeformed porous media had some discrepancy in pressure distribution. The pressure and velocity in a working condition are numerically calculated to predict the performance of the air plates. Distributions of the parameters in the PEMFC are analyzed numerically under steady-state conditions.

  • PDF

Perturbation Analysis of Stokes Flow in Porous Medium (다공성 매질의 내부유동에 관한 섭동해석)

  • Seong, Kwanjae
    • Journal of Korean Society on Water Environment
    • /
    • v.21 no.4
    • /
    • pp.393-397
    • /
    • 2005
  • In this study, flow in a porous medium is analyzed using a computer-extended perturbation series solution. The flow is modelled as a creeping flow in a periodically constricted channel. The channel walls have a sinusoidally varying width and the flow is analyzed in terms of its vorticity and stream functions in the Stokes flow regime. The perturbation series in terms of a small parameter, average width to length ratio, is extended with a computer resulting in purely asymptotic series and Pade summation is used to obtain final results. Resulting flow shows flow separations in the widening section and immobile zones in the widest section of the flow regime with reattachment in the narrowing section. Analysis of the flow separation phenomena resulted in a correlation between the two geometric parameters of the channel walls to predict the onset of flow separation in the Stokes flow regime.

Structural Deformation and Flow Analysis for Designing Air Plate of a Fuel Cell (구조 변형을 고려한 연료전지 공기판의 유동 해석)

  • Yang, Ji-Hae;Park, Jung-Sun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.7
    • /
    • pp.877-884
    • /
    • 2004
  • In this paper, structural analysis is performed to investigate the deformation of porous media in a proton exchange membrane fuel cell (PEMFC). Structural deformation of air plate of the fuel cell causes the change in configuration and cross sectional area of the channel. The distributions of mass flow rate and pressure are major factors to decide the performance of a PEMFC. These factors are affected by channel configuration of air plate. Two kinds of numerical air plate models are suggested for flow analyses. Deformed porous media and undeformed porous media are considered for the two models. The Numerical flow analysis results between deformed porous media and undeformed porous media have some discrepancy in pressure distribution. The pressure and velocity distribution under a working condition are numerically calculated to predict the performance of the air plates. Pressure and velocity distributions are compared for two models. It is shown that structural deformation makes difference in flow analysis results.

Expansion of the Darcy-Weisbach Relation for Porous Flow Analysis (다공질 유동해석을 위한 Darcy-Weisbach 관계식의 확장)

  • Shin, Chang Hoon;Park, Warn Gyu
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.4
    • /
    • pp.229-238
    • /
    • 2017
  • This study started to deduce a permeability relationship that can consider the geometric features of various porous media under different flow regimes. With reference to the previous works of Kozeny and Carman, the conventional Darcy-Weisbach relation (Darcy's friction flow equation) was reviewed and expanded for porous flow analysis. Based on the capillary model, this relation was transformed to the friction equivalent permeability (FEP) definition. The validity of the FEP definition was confirmed by means of comparison with the Kozeny-Carman equation. Hereby, it was shown that the FEP definition is the generalized form of the Kozeny-Carman equation, which is confined to laminar flow through a circular capillary. In conclusion, the FEP definition as a new permeability estimation method was successfully developed by expanding the Darcy-Weisbach relation for porous flow analyses.

ANALYTICAL SOLUTION OF COUPLED RADIATION-CONVECTION DISSIPATIVE NON-GRAY GAS FLOW IN A NON-DARCY POROUS MEDIUM

  • Darvishi, Mohammad Taghi;Khani, Farzad;Aziz, Abdul
    • Journal of applied mathematics & informatics
    • /
    • v.28 no.5_6
    • /
    • pp.1203-1216
    • /
    • 2010
  • The homotopy analysis method (HAM) has been applied to develop an analytic solution for the coupled radiation-convection dissipative non-gray gas flow in a non-Darcy porous medium. Results are presented for the surface shear and temperature profiles are presented to illustrate the effect of various parameters appearing in the analytical formulation. The accuracy and convergence of the method is also discussed.

A Study of Three Dimensional Flow Characteristics near the Porous Wall (다공성 방풍벽의 3차원 유동특성)

  • Kim, Sung-Hoon;Kim, Il-Hyun;Chang, Young-Bae
    • Journal of Energy Engineering
    • /
    • v.28 no.4
    • /
    • pp.19-28
    • /
    • 2019
  • A study has been done on the three dimensional turbulent flow characteristic near the porous wall. The porous holes are considered by penetrating the wall in regular arrangement, and porosity is controlled by diameter of holes. Flow characteristics near the three dimensional porous wall are compared with field test results and self-generated experimental results. FLUENT is employed for computational analysis on the effect of three dimensional porosity with flow and pressure characteristics. As a result, drag coefficient is defined and compared for three dimensional effect. The drag coefficient is mostly a function of porosity, whereas the effect of Reynolds number is minimal, and its correlation is presented in terms of three dimensional porosity.

A NUMERICAL STUDY ON THE CHARACTERISTIC OF FLOW DISTRIBUTION IN THE CHANNEL OF PLATE HEAT EXCHANGER FOR VARIOUS NUMBER OF CHANNELS (판형 열교환기의 전열판 개수에 따른 유량 분배 특성에 대한 수치해석)

  • Lee, Na-Ri;Jung, Jae-Hyuk;Hur, Nahm-Keon
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.129-134
    • /
    • 2009
  • In the present study, the characteristic of flow distribution in the channel of a plate heat exchanger is investigated numerically. In order to accomplish the efficient and fast analyses of the flow characteristics in the channel, a semi-microscopic analysis has been performed using a porous media model. For semi-microscopic analysis using porous media, the flow resistance coefficients are obtained through the result of pressure drop in the experimental data. The results showed that the variation of mass flow rate, geometry and chevron angle strongly depend on the flow distribution in the channel. Particularly, the chevron angle is most important factor for uniform flow distribution.

  • PDF

Analysis on the Dynamic Characteristics of Externally Pressurized Porous Thrust Air Bearings (다공질정압 Thrust공기 베어링의 동특성 해석)

  • Park, Cheon-Hong;Lee, Hu-Sang
    • 연구논문집
    • /
    • s.23
    • /
    • pp.5-13
    • /
    • 1993
  • The present work deals with the theoretical prediction of static & dynamic characteristic of annular type externally pressurized thrust air bearings with metal-sintered porous media. For the evaluation of surface loading effect by machining, it is assumed that the flow at the porous surface is dominant and which is equivalent to the flow through orifice. Finite different method with over-relaxation method is used to solve the numerical problems. The influences of radius ratio, supply pressure and squeeze number on performances are investigated, as the results. The results of this study can be used to predict the optimal running condition and stable realm of porous bearings.

  • PDF

A Modified Turbulent Porous Modeling for Numerical Analysis (수치해석을 위한 변형된 난류 다공성 모델링)

  • Chung, Kil-Yoan;Lee, Kwan-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.6
    • /
    • pp.875-882
    • /
    • 2002
  • The modeling for turbulent flow through a porous media has not been confirmed because of a undetermined constant which appears in the governing equations. In present study, the turbulent porous modeling based on the local thermal equilibrium has been extended to the turbulent clear flow. A undetermined constant is also suggested by microscopic analysis. The microscopic analysis is performed in the flat tube with micro-channels, and it confirms that the undetermined constant is 0.99. It is shown that the results of the macroscopic analysis using confirmed constant agree well with those of the microscopic analysis with a maximum error of 3.5%.