• Title/Summary/Keyword: Porosity ceramics

Search Result 201, Processing Time 0.053 seconds

Development of Ceramics Body using Waste Bone China (폐본차이나를 활용한 도자기 소지 개발)

  • Lee, Jea-Il;Lee, Yong-Seok;Lee, Byung-Ha
    • Journal of the Korean Ceramic Society
    • /
    • v.48 no.1
    • /
    • pp.46-51
    • /
    • 2011
  • The influx of Western culture and the food culture have altered the tableware of Korea, increasing the amount of using tableware. The representative tableware is known as bone china. Considering not only the amount of bone china waste generated from broken tableware at homes and but also faulty bone china products at factories, the bone china waste disposed in simple landfills is to be a serious environmental problem to solve. In this study, following "the research on development of ceramics body using waste celadon" of which the possibility was confirmed, development of ceramics body is conducted by recycling waste bone china. From the result of the study, it was understood that maximum addition of waste bone china was 20% of the whole material on the basis of measurement of plasticity. So 20% of pulverized bone china was added and the characteristics were evaluated, and the result was that porosity, water absorptivity and plasticity were 0.756%, 0.339% and 24.13%, respectively. Bending strength was $672\;kgf/cm^2$, which showed a good sintering condition. Therefore, it was considered that waste bone china could be utilized for development of new porcelain material.

Characteristic Changes of the Hydrated Sodium Silicate Depending on Heat Treatment Temperature (수화된 규산소다의 열처리 온도에 따른 물성변화)

  • Kong, Yang-Pyo;Cho, Ho-Yeon;Suhr, Dong-Soo
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.3
    • /
    • pp.185-189
    • /
    • 2008
  • In order to fabricate porous ceramics, hydrated sodium silicate was synthesized by hydrothermal reaction using anhydrous sodium silicate. The microstructural and the structural characteristics of the expanded ceramics were observed depending on heat treatment temperature (550, 600, 650, $700^{\circ}C$) and then the effect of these characteristics on the compressive strength and the temperature gradient was investigated. As the heat treatment temperature was increased, the compressive strength was decreased from $0.717KN/cm^2\;(550^{\circ}C)\;to\;0.166KN/cm^2\;(700^{\circ}C)$. The temperature gradient was increased with increasing the experimental temperature regardless of the heat treatment temperature. The temperature gradient of the expanded ceramics which was heat treated at $650^{\circ}C\;was\;300^{\circ}C$. The bulk specific gravity, porosity, pore size, pore characteristics and wall thickness were varied depending on heat treatment temperature, and the compressive strength and the temperature gradient were governed by the complex effects of these factors.

The hydration resistance improvement of MgO ceramics by $TiO_2$ addition ($TiO_2$ 첨가에 의한 MgO 세라믹스의 표현 수화 저항성 향상)

  • Ryu, Su-Chak;Kim, Jin-Kon;Hyun Cho
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.11 no.6
    • /
    • pp.269-273
    • /
    • 2001
  • The effect of $TiO_2$addition on the hydration reaction of MgO ceramics were studied after being heated at $1450^{\circ}C$. The pure MgO ceramics showed significant weight change after exposure to water due to the hydration reaction through the formation of $Mg(OH)_2$while $TiO_2$-added MgO ceramics did not. The $Mg_2TiO_4$phase were observed in the $TiO_2$-added MgO ceramics sintered at 145$0^{\circ}C$. Bulk density increased as the amount of $TiO_2$increased and the apparent porosity and water absorption decreased by $TiO_2$addition. The hydration resistance of MgO ceramics was found to be improved by $TiO_2$addition.

  • PDF

Wet Foam Stability from Colloidal Suspension to Porous Ceramics: A Review

  • Kim, Ik Jin;Park, Jung Gyu;Han, Young Han;Kim, Suk Young;Shackelford, James F.
    • Journal of the Korean Ceramic Society
    • /
    • v.56 no.3
    • /
    • pp.211-232
    • /
    • 2019
  • Porous ceramics are promising materials for a number of functional and structural applications that include thermal insulation, filters, bio-scaffolds for tissue engineering, and preforms for composite fabrication. These applications take advantage of the special characteristics of porous ceramics, such as low thermal mass, low thermal conductivity, high surface area, controlled permeability, and low density. In this review, we emphasize the direct foaming method, a simple and versatile approach that allows the fabrication of porous ceramics with tailored microstructure, along with distinctive properties. The wet foam stability is achieved under the controlled addition of amphiphiles to the colloidal suspension, which induce in situ hydrophobization, allowing the wet foam to resist coarsening and Ostwald ripening upon drying and sintering. Different components, like contact angle, adsorption free energy, air content, bubble size, and Laplace pressure, play vital roles in the stabilization of the particle stabilized wet foam to the porous ceramics. The mechanical behavior of the load-displacements curves of sintered samples was investigated using Herzian indentations testes. From the collected results, we found that microporous structures with pore sizes from 30 ㎛ to 570 ㎛ and the porosity within the range from 70% to 85%.

Microwave Dielectric Properties of $0.8Mg_4Ta_2O_9-0.2CaTiO_3$ Ceramics with Sintering Temperatuer (소결온도에 따른 $0.8Mg_4Ta_2O_9-0.2CaTiO_3$ 세라믹스의 마이크로파 유전 특성)

  • Kim, Jae-Sik;Choi, Eui-Sun;Lee, Moon-Kee;Ryu, Ki-Won;Lee, Young-Hie
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07b
    • /
    • pp.659-662
    • /
    • 2004
  • The microwave dielectric properties of the $0.8Mg_4Ta_2O_9-0.2CaTiO_3$ ceramics with sintering temperature were investigated. All the sample of the $0.8Mg_4Ta_2O_9-0.2CaTiO_3$ ceramics prepared by conventional mixed oxide method and sintered at $1400^{\circ}C-1450^{\circ}C$. According to X-ray diffraction patterns of the $0.8Mg_4Ta_2O_9-0.2CaTiO_3$ ceramics, major phase of the hexagonal $Mg_4Ta_2O_9$ phase were showed. Porosity of the $0.8Mg_4Ta_2O_9-0.2CaTiO_3$ ceramics were reduced with increasing sintering temperature, but the bulk density was increased. In the case of $0.8Mg_4Ta_2O_9-0.2CaTiO_3$ ceramics sintered at $1425^{\circ}C$, dielectric constant, quality factor and temperature coefficient of resonant frequency(TCRF) were 13.69, 63,754GHz and -29.37 $ppm/^{\circ}C$, respectively.

  • PDF

Phase Formation and Mechanical Property of YSZ-30 vol.% WC Composite Ceramics Fabricated by Hot Pressing (가압소결로 제조된 YSZ-30 vol.% WC 복합체 세라믹스의 상형성 거동과 기계적 특성)

  • Jin-Kwon Kim;Jae-Hyeong Choi;Nahm Sahn;Sung-Soo Ryu;Seongwon Kim
    • Journal of Powder Materials
    • /
    • v.30 no.5
    • /
    • pp.409-414
    • /
    • 2023
  • YSZ (Y2O3-stabilized zirconia)-based ceramics have excellent mechanical properties, such as high strength and wear resistance. In the application, YSZ is utilized in the bead mill, a fine-grinding process. YSZ-based parts, such as the rotor and pin, can be easily damaged by continuous application with high rpm in the bead mill process. In that case, adding WC particles improves the tribological and mechanical properties. YSZ-30 vol.% WC composite ceramics are manufactured via hot pressing under different pressures (10/30/60 MPa). The hot-pressed composite ceramics measure the physical properties, such as porosity and bulk density values. In addition, the phase formation of these composite ceramics is analyzed and discussed with those of physical properties. For the increased applied pressure of hot pressing, the tetragonality of YSZ and the crystallinity of WC are enhanced. The mechanical properties indicate an improved tendency with the increase in the applied pressure of hot pressing.

The Study of Alumina Ceramic to Metal Bonding (알루미나 소결체와 금속간의 접합에 관한 연구)

  • 김종희;김형준
    • Journal of the Korean Ceramic Society
    • /
    • v.15 no.2
    • /
    • pp.89-97
    • /
    • 1978
  • The basic mechanism of adherence in sintered high purity alumina ceramic-to-metal bonding was studied. Emphasis was placed on flux composition, porosity of the fired ceramics, and metallizing mixtures. The study was conducted on 95 and 99.5% alumina, using molydbenum-manganese, molybdenum-manganese-silicon dioxide metallizing compositions. Metallizing was performed in wet hydrogen (dew point, +17$^{\circ}C$) at 145$0^{\circ}C$ for 45min. This experiment indicated that adhernece mechanism of ultra high purity alumina ceramic was attributed to formation of $MnAl_2O_$4, and in the case of 95% alumina containing glass, the migration of glass from the interface into the void of the metal coating was the main role to the adhrence. It showed also that greater the bond-strength was resulted as porosity was increased.

  • PDF

Bonding Behavior of Alumina Ceramic to Metals (알루미나 세라믹과 금속과의 접합거동)

  • 김종희;김정태
    • Journal of the Korean Ceramic Society
    • /
    • v.16 no.3
    • /
    • pp.169-177
    • /
    • 1979
  • The effect of apparent porosity of the fired ceramics, metallizing temperature, and metallizing mixtures on the bond strength in metal-to-ceramic seals was investigated. Three different metallizing compounds were metallized on dense alumina bodies at 1300~$1500^{\circ}C$ in dry hydrogen atmosphere. Bond strength between metal and alumina body was measured by means of nstron test machine. The greater bond strength was observed as the apparent porosity and metallizing temperature was increased. This work indicated that the glassy phase in metallizing mixture, having had sufficient fluidity to migrate into the alumina body, reacted with alumina and thereby forming strong metal-ceramic interface bond. It also showed that the glassy phase having higher thermal expansion cofficient than molybdenum might contribute to the strong bond formation by providing compressive stress around the molybdenum particle.

  • PDF

Preparation of Porous $Al_2O_3$-AIN-Mullite and $Al_2O_3$-AIN-SiC

  • Kim, Byung-Hoon;Na, Yong-Han
    • The Korean Journal of Ceramics
    • /
    • v.1 no.3
    • /
    • pp.147-151
    • /
    • 1995
  • Porous composite of $Al_2O_3$ and AIN based mullite and SiC can be prepared by alumium reaction synthesis and atmosphere controllied sintering in order to improve the durability of a gas filter body. The porous $Al_2O_3$-AIN-mullite, which has a strength of 168 kg/$\textrm{cm}^2$ and porosity of 51.59%, could be obtained by stmospheric firing at $1600^{\circ}C$ and the porous $Al_2O_3$-AIN-SiC with a porosity of 33% and strength of 977 kg/$\textrm{cm}^2$, could also be prepared. The average pore size has been changed from 0.2$\mu\textrm{m}$ in a reduction atmosphere and to 2$\mu\textrm{m}$ in an air atmosphere, respectively.

  • PDF

Phase Transition and Thermal Expansion Behavior of Zirconia Setter Fabricated from Fused CaO Stabilized Zirconia

  • Park, Ji-Hoon;Bang, Il-Hwan;Lee, Sang-Jin
    • Journal of the Korean Ceramic Society
    • /
    • v.56 no.2
    • /
    • pp.184-190
    • /
    • 2019
  • To improve resistance in thermal shock of zirconia setter which is frequently and repeatedly exposed to high temperature, high degree of porosity and control of thermal expansion are needed for which the fused CSZ (CaO stabilized zirconia) is used to produce the zirconia setter. In the present study, the effects of sintering temperature, cool down condition, addition of CaO stabilizer, and addition of other additives on phase transition and thermal expansion behavior of the fabrication process of zirconia setter, were examined. The zirconia setter, fabricated with fused CSZ at 1550℃, exhibited 20.4 MPa of flexural strength, 6.8% of absorbance, and 27.9% of apparent porosity. The rapid change in thermal expansion of zirconia setter is observed at temperature around 800℃, and it was reduced by low firing temperature, slowed cooled down, and addition of CaO.