• Title/Summary/Keyword: Poroelasticity

Search Result 15, Processing Time 0.021 seconds

Study on the Generalization of the Extended Framework of Hamilton's Principle in Transient Continua Problems (확장 해밀턴 이론의 일반화에 대한 고찰)

  • Kim, Jinkyu;Shin, Jinwon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.29 no.5
    • /
    • pp.421-428
    • /
    • 2016
  • The present work extends the recent variational formulation to more general time-dependent problems. Thus, based upon recent works of variational formulation in dynamics and pure heat diffusion in the context of the extended framework of Hamilton's principle, formulation for fully coupled thermoelasticity is developed first, then, with thermoelasticity-poroelasticity analogy, poroelasticity formulation is provided. For each case, energy conservation and energy dissipation properties are discussed in Fourier transform domain.

Theoretical observation of waves in cancellous bone

  • Yoon, Young-June;Chung, Jae-Pil
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.13 no.5
    • /
    • pp.419-424
    • /
    • 2020
  • Poroelasticity theory has been widely used for detecting cancellous bone deterioration because of the safe use for humans. The tortuosity itself is an important indicator for ultrasound detection for bone diseases. The transport properties of cancellous bone are also important in bone mechanotransduction. In this paper, two important factors, the wave velocity and attenuation are examined for permeability (or tortuosity). The theoretical calculation for the relationship between the wave velocity (and attenuation) and permeability (or tortuosity) for cancellous bone is shown in this study. It is found that the wave along the solid phase (trabecular struts) is influenced not by tortuosity, but the wave along the fluid wave (bone fluid phase) is affected by tortuosity significantly. However, the attenuation is different that the attenuation of a fast wave has less influence than that of a slow wave because the slow wave is observed by the relative motion between the solid and fluid phases.

Behavior of trabecular bone considered by fluid phase and strain rate (유체상과 변형율속도를 고려한 해면골의 거동해석)

  • 민성기;홍정화;문무성;이진희
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.1078-1080
    • /
    • 2002
  • The pressure variation of interstitial fluid is one of the most important factors in bone physiology. In order to understand the role of interstitial fluid and the biomechanical interactions between fluid and solid constituents within bone, poroelastic theory was applied. The purpose of this study is to describe the behavior of calf vertebral trabecular bone composed of the porous solid trabeculae and the viscous bone marrow by using a commercial finite element analysis program based on the poroelasticity. In this study, the model was numerically tested for 5 different strain rates, i. e., 0.001, 0.01, 0.1, 1.0, and 10 per second. The material properties of the calf vertebral trabecular bone were utilized from the previous experimental study. Two asymptotic poroelastic response, the drained and undrained deformation, were predicted. From the predicted results for the simulated five strain rate, it was found that the pore pressure generation has a linearly increasing behavior when the strain rate is the highest at 10 per second, other wise it showed a nonlinear the strain rate Increased. Based on the results of the present study, it was suggested that the calf vertebral trabecular bone could be modeled as a porous material and its strain rate dependent material behavior could be predicted.

  • PDF

Seismic motions in a non-homogeneous soil deposit with tunnels by a hybrid computational technique

  • Manolis, G.D.;Makra, Konstantia;Dineva, Petia S.;Rangelov, Tsviatko V.
    • Earthquakes and Structures
    • /
    • v.5 no.2
    • /
    • pp.161-205
    • /
    • 2013
  • We study seismically induced, anti-plane strain wave motion in a non-homogeneous geological region containing tunnels. Two different scenarios are considered: (a) The first models two tunnels in a finite geological region embedded within a laterally inhomogeneous, layered geological profile containing a seismic source. For this case, labelled as the first boundary-value problem (BVP 1), an efficient hybrid technique comprising the finite difference method (FDM) and the boundary element method (BEM) is developed and applied. Since the later method is based on the frequency-dependent fundamental solution of elastodynamics, the hybrid technique is defined in the frequency domain. Then, an inverse fast Fourier transformation (FFT) is used to recover time histories; (b) The second models a finite region with two tunnels, is embedded in a homogeneous half-plane, and is subjected to incident, time-harmonic SH-waves. This case, labelled as the second boundary-value problem (BVP 2), considers complex soil properties such as anisotropy, continuous inhomogeneity and poroelasticity. The computational approach is now the BEM alone, since solution of the surrounding half plane by the FDM is unnecessary. In sum, the hybrid FDM-BEM technique is able to quantify dependence of the signals that develop at the free surface to the following key parameters: seismic source properties and heterogeneous structure of the wave path (the FDM component) and near-surface geological deposits containing discontinuities in the form of tunnels (the BEM component). Finally, the hybrid technique is used for evaluating the seismic wave field that develops within a key geological cross-section of the Metro construction project in Thessaloniki, Greece, which includes the important Roman-era historical monument of Rotunda dating from the 3rd century A.D.

A Pilot study of poroelastic modulus measurement in micro-bone tissue (미세 골조직의 공극탄성계수 측정을 위한 예비 연구)

  • 박영환;홍정화
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.1038-1041
    • /
    • 2004
  • In this study, developed a micro-level experimental setup to measure pore pressure and poroelastic modulus in various strain and strain rate about a stress in micro-structure of bone tissue. It is essential device in the development of the model to analysis the interstitial bone fluid flow of the lacuno-canalicular system to be known that would effect on the bone remodeling. The constitution of the experimental setup is as follows, microscopic image processing system; actuator control unit; load measurement system. A pilot study was used an artificial chemical wood to have similar poroelastic property of bone matrix and conducted to validate the suitability of the measurement system.

  • PDF

Evaluation of Rainfall Impacts on Groundwater Flow in Slopes and Slope Stability Using a Fully Coupled Hydrogeomechanical Model (완전 연동된 수리지질역학적 모델을 이용한 사면 내의 지하수유동과 사면의 안정성에 대한 강수의 영향 평가)

  • Kim, Jun-Mo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.11a
    • /
    • pp.519-526
    • /
    • 2000
  • 강수량 변동에 따른 사면 내의 지하수유동과 사면의 안정성 변화를 동시에 분석.평가하기 위하여 하나의 완전 연동된 수리지질역학적 모델을 제시하였다. 이 모델은 변형성 지질매체 내에서의 지하수유동을 설명하는 일련의 지배식들과 Galerkin 유한요소법에 기초하여 개발되었다. 1990년부터 1999년까지의 서울지역의 건기 (1월) 및 우기 (8월) 강수량 하에 있는 토양 사면에 대해 개발된 모델을 적용하여 일련의 수치실험을 실시하였다. 수치실험의 결과는 강수량이 증가함에 따라 사면의 수리역학적 안정성이 전반적으로 악화됨을 보여준다. 즉 강수량이 증가할수록 공극수압이 증가하고 지하수면이 상승한다. 그 결과 불포화대가 축소되고 삼출면이 팽창되며 사면의 전단부를 따라 지하수유동속도가 증가하게 된다. 동시에 강수량이 증가할수록 사면 전단부를 향해 전반적인 변위량이 증가한다. 그 결과 안전율이 1 이하인 불안전한 지역이 사면 전단부에서 사면 상부 쪽으로 전파.팽창되며 그 두께도 증가한다. 수치실험의 결과는 또한 사면의 표면에서는 전단파괴와 더불어 인장파괴도 발생할 수 있음을 보여준다.

  • PDF

The piezoelectricity of trabecular bone in cancellous bone wave propagation

  • Yoon, Young June;Chung, Jae Pil
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.14 no.1
    • /
    • pp.104-107
    • /
    • 2021
  • The orientation of trabeculae and porosity determine the wave propagation in cancellous bone. Wave propagation, as well as charge density and piezoelectricity, stimulate bone remodeling. Also, Charged ions in the fluid affect wave propagation in cancellous bone. But the trabecular struts' piezoelectricity does not change the waveform of cancellous bone. However, the underlying mechanism is unknown yet why trabecula struts' piezoelectricity does not change wave propagation through cancellous bone. Thus, we derived the governing equation indicating that trabecular struts' piezoelectric properties show that those do not affect wave propagation in cancellous bone.

Hydro-mechanical Behavior of a Circular Opening Excavated in Saturated Rockmass (포화된 암반에 굴착된 원형공동의 수리-역학적 거동)

  • Lee Youn-Kyou;Shin Hee-Soon
    • Explosives and Blasting
    • /
    • v.23 no.2
    • /
    • pp.23-35
    • /
    • 2005
  • Excavation of an opening in a saturated porous rock may lead to the development of pore pressure around the opening due to the redistribution of initial rock stresses. The built-up of pore pressure, in turn, may affect the mechanical behavior of rock mass and give the different pattern of stress distribution around the opening from that of the case where the coupling is neglected. In this study, the short time response of an opening excavated in saturated ground under anisotropic initial stress conditions was investigated numerically. Not on the wall of opening but at a short distance from the wall, the tangential stresses were peak during the short period after excavation when the hydro-mechanical coupling is considered.

Image-Based Computational Modeling of Porous Matrix Composites and Calculation of Poroelastic Coefficients (다공성 기지를 갖는 복합재의 이미지 기반 전산 모형화 및 기공 탄성 계수 산출)

  • Kim, Sung Jun;Shin, Eui Sup
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.5
    • /
    • pp.527-534
    • /
    • 2014
  • Poroelastic analyses of fiber-reinforced composites were performed using image-based computational models. The section image of a porous matrix was analyzed in order to investigate the porosity, number of pores, and distribution of pores. The resolution, location, and size of the section image were considered to quantify the effective elastic modulus, poroelastic parameter, and strain energy density using the image-based computational models. The poroelastic parameter was calculated from the effective elastic modulus and pore pressure-induced strain. In addition, the results of the poroelastic analyses were verified through representative volume elements by simplifying various pore configurations and arrangements.

Numerical Analysis of Borehole Stability Depending on Drilling Fluid (Drilling Fluid를 적용한 시추공의 안정성에 대한 수치해석)

  • Sin, Chun-won;Yoo, Chung-Sik
    • Journal of the Korean Geosynthetics Society
    • /
    • v.16 no.2
    • /
    • pp.183-194
    • /
    • 2017
  • When a borehole is drilled, the load distributed by the removal is taken to re-establish equilibrium. As a result, the stresses around the borehole is redistributed. If there is no hydrostatic support pressure by drilling fluid (mud) introduced into the borehole, failure in the formation may take place. The mud pressure boundary that keeps the borehole stable is defined as a mud window. To predict the potential for failures around the borehole, a series of numerical analysis were performed and compared with a mud window. The effect of failure criterion and the intial stress ratio adopted on the mud window was also studied.