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1. Introduction

In recent years around the world, rainfall-induced slope instability in variably saturated soils and
loose fills has attracted increasing concern and attention not only from the general public but also
from geoscientists and civil engineers because of the uniqueness of its mechanism. Intensive rainfall,
which acts as a hydraulic stress, intrinsically induces the hydromechanical interaction between the
groundwater flow field and the solid skeleton (medium) deformation field within a geologic medium
as follows. As infiltration of rainfall into a slope takes place, the pore water pressure increases and
the groundwater table rises causing a reduction in the matric suction, an expansion of the seepage
face, and an increase in the groundwater velocity. This, in turn, leads to a decrease in the effective
stress acting on the solid skeleton causing a decrease in the shear strength on the potential failure
surface to a point where equilibrium can no longer be sustained in the slope and then failures may
occur. This hydrogeomechanical phenomenon can be better explained through the fully coupled
poroelasticity theory than by the conventional theory of solid skeleton deformation that is uncoupled
from groundwater flow. Since the pioneering work of Biot (1941), the poroelasticity theory has been
extensively developed for variably saturated anisotropic porous and fractured geologic media.

A series of two-step numerical approaches has been presented to evaluate effects of infiltration on
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the stability of variably saturated slopes (Cai et al., 1998, Ng and Shi, 1998; Fourie et al, 1999). In
their approaches, the spatial distribution of the pore water pressure is first obtained independently
by solving a simple variably saturated water flow equation in terms of the pore water pressure only
using a finite element method. It is then used as an input groundwater condition to determine the
factor of safety using a limit equilibrium method. Thus, in their approaches, the groundwater flow
field and the solid skeleton deformation field are actually uncoupled. On the other hand, a linear
poroelastic numerical model has been developed to analyze the relationship between groundwater
flow and slope stability (Iverson and Reid, 1992; Reid and Iverson, 1992). However, in their model, it
is assumed that the slopes are fully saturated with water. Thus, using their model, one cannot
investigates rainfall impacts on groundwater flow and slope stability under the unsaturated flow
condition and the variable rainfall-infiltration-seepage slope surface, which are more realistic.

The objectives of this paper are thus to present a general fully coupled hydrogeomechanical model
and to quantitatively analyze the rainfall impacts on variably saturated groundwater flow and slope
stability, as an important application of the nonlinear poroelasticity theory. From a practical point of
view, a quantitative understanding of such rainfall impacts may provide more improved guidelines
for predicting the slope instabilization and failure and maintaining the slope stability required.

2. Governing Equations

The poroelastic governing equations for groundwater flow in deforming variably saturated porous
geologic media may be written as (Kim and Parizek, 1999a; Kim and Parizek, 1999b; Kim, 2000)

0
v-[—K-(h+z)]+(n cfz,iw-i-nswb’w 7w)-%}zf-+ a. S,,;g;( a::)=q (1)
) du; ou ; du _
ax,‘ G( 3x,+ axz)‘}’/l( axk)6,',‘ a. Sw kaa,‘j]
+inS,put(Q—molg,=0 Li=2%9.2 (2)

In equation (1), K= K, K is the effective hydraulic conductivity tensor, A= P/ 7, is the (pore
water) pressure head, z is the vertical axis and elevation head, # is the porosity, S, is the degree
of water saturation, B, is the compressibility of water (44 X 107 m*N), y,= 0,& is the unit
weight of water (9.806 X 10° N/m®), a,=1— K/ K is Biot’s hydromechanical coupling coefficient
or the effective stress coefficient, %, is the displacement of solid in the £ direction, ¢ is the water
source or sink term, and £ is time. Here K, is the relative hydraulic conductivity, K, is the
saturated hydraulic conductivity tensor, P is the pore water pressure (positive for compression), p ,

is the density of water, g is the gravitational acceleration constant, K is the bulk modulus of the
solid skeleton, and K is the bulk modulus of solid. Note that ¢ = k+ 2z is the total hydraulic head,

dS ,/dh is the specific water saturation capacity, §,=#n S, is the water content, and
€,= 0u,/ dx, is the volumetric strain. In addition, q,=— K- v(k+ z) is the Darcy velocity in

which v {(&+ 2z) is the hydraulic gradient.
In equation (2), G=p=E/2(1+v), A=Ev/(1+v)(1—2v), G is the shear modulus, E is
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Young’'s modulus, and v is Poisson’s ratio. The pair of constants A and ¢ are often referred to as
Lamé’s constants. Here 6 ; is Kronecker’s delta, o the solid density, and g; is the component of
gravitational acceleration in the 7 direction. In the first square bracket on the left-hand side of
equation (2), the sum of the first two terms is equal to the deformation-producing incremental

effective stress tensor ¢’ ; (positive for tension), and the sum of all three terms is equal to the
incremental total stress tensor ¢ (positive for tension) such that ¢;= ¢ ;— a. S, 7,% 8, The

remaining term on the left-hand side of equation (2) represents the body force f; in the ¢ direction.

In summary, equations (1) and (2) constitute a set of four nonlinear partial differential equations
with four dependent variables %, wu,, wu, and %, in Cartesian coordinates (x, v, 2). Thus full
coupling between the groundwater flow field and the solid skeleton deformation field in partially

saturated porous geologic media can be achieved by simultaneously solving these governing
equations with appropriate constitutive relationships for the unsaturated flow condition.

3. Numerical Formulation

The Galerkin finite element method (Istok, 1989; Lewis and Schrefler, 1998) is chosen here to
approximate the governing equations (1) and (2) and to obtain their simultaneous solutions because
of its practical ability to treat variably saturated heterogeneous and anisotropic regions with complex

boundaries. In the finite element method, an unknown variable ¢, which represents the pressure

head & and the displacements #, %, and w, in equations (1) and (2), can be approximated

by a tnal solution ¢  in space by means of the basis (shape) functions and their nodal values as

o(x, v, 2, )=~ ¢ (x,v,2, D)= 21 N(x,v,2) ¢ ;(D p=h, Uy, Uy, U, (3)

where N; is the basis function for node J, ¢, is the value of the unknown variable ¢ at node J,

and NN is the total number of nodes in a region of interest. Application of Galerkin's principle
and Green's theorem and substitution of equation (3) to equations (1) and (2) yields

va N -K-v N,dR{h}+fRN,(ni9—W+n Su Bu yw) N,dR{

i at)

ot
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where the integral terms represent the coefficient matrices and the load vectors, the brace { -}
terms represent the column vectors of the unknown variable ¢ and its time derivatives, R is the

region of interest with boundary B, and #; is the component of the outward unit vector s, which

is normal to the boundary B, in the j direction.

To discretize the time derivative terms in equation (4), the finite difference scheme with a time
weighting factor ® is employed. At each time step, the incremental Picard scheme with a nonlinear
iteration parameter £ is then adopted in order to solve the nonlinear problem associated with

changes in the unsaturated hydraulic properties (i.e. S, dS,/dh, and K, with the pressure head

h. To achieve numerical stability, @ is set equal to 1.0 (implicit backward time stepping), and £
is set equal to 0.25 (under-relaxation) in this paper.

Based on the finite element method described in this section, a general multidimensional numerical
model, named COWADE123D (Kim, 1995), has been developed to solve the fully coupled poroelastic
governing equations (1) and (2). This numerical model has been successfully verified for its
accuracy and applied to a variety of fully coupled hydrogeomechanical phenomena (Kim et al, 1997;
Kim and Parizek, 1997; Kim and Parizek, 1999a; Kim and Parizek, 1999b; Kim, 2000).

4. Model Application

Using the fully coupled hydrogeomechanical model developed in the preceding section, a series of
steady-state numerical simulations is performed for a straight slope composed of silty soil (silt) and
inclined 26.6 ° (2:1 slope) under two different rainfall (precipitation) rates. As shown in Figure 1, the
cross section of the slope (40 m X 40 m) is taken as a two-dimensional vertical system with a
unit length (1 m) assuming plane strain in the y direction (ie. perpendicular to the figure). The
slope also has a 60-m-wide flat foundation on the slope crest.

The rainfall rates used in this modeling correspond to those during dry and wet seasons between
1990 and 1999 in Seoul, Korea. In Seoul, for the ten years, the driest month (dry season) is January
with the rainfall rate of 6.13 X 10 m/sec while the wettest month (wet season) is August with
the rainfall rate of 462 X 107 m/sec (Korea Meteorological Administration, 1990-1999).

The hydraulic and mechanical properties of the silt are as follows (van Genuchten, 1980; Guymon,

1994; Lambe and Whitman, 1969; Bardet, 1997): # = 046, K, = 694 X 107 &; m/sec, v = 0.33,
E =110 x 10" N/m’, p, = 267 x 10° kg/m®, a. = 1.00, S,, (residual water saturation) = 7.39
X 107 @y (van Genuchten’s parameter) = 1.6 m), = ve (van Genuchten’s parameter) = 1.37, ¢’
(effective angle of internal friction) = 30°, ¢ (effective cohesion) = 1.00 X 10 N/m’ and T,
(effective tensile strength) = 0.00 N/m”

The system is discretized into 592 isoparametric 4-node quadrilateral elements with 646 nodes.
Along the left-hand side at x = 0 m, a no-flow boundary condition and a no-horizontal
displacement boundary condition are applied considering the symmetry, but vertical displacement is
allowed. The same boundary conditions are also applied along the right-hand side at x = 100 m.
The impermeable bottom surface at z = 0 m is fixed vertically, but it is free to move horizontally.
The top slope surface is free to move both vertically and horizontally, and it is treated as permeable

by applying a variable rainfall-infiltration-seepage boundary condition to take into account infiltration
and seepage along the slope surface under rainfall. The numerical implementation of this mixed-type
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boundary condition was described in detail by Huyakorn et al. (1986), Kim (1995), and others.

The numerical simulation results show certain differences in the hydrogeomechanical responses of
the slope to those two different rainfall rates. In Figure 1, the spatial distributions of pressure head,
hydraulic head, and Darcy velocity in the slope during the dry season are shown on the left column
and are compared with those in the slope during the wet season on the right column. The pressure
head (pore water pressure) and hence the total hydraulic head increase as the rainfall rate increases.
As a result, the groundwater table rises, the unsaturated zone is reduced, the seepage face expands
from the slope toe toward the slope crest, and Darcy velocity increases along the seepage face. In
Figure 2, the spatial distributions of displacement vector, factor of safety, and potential failure index
in the siope during the dry season are shown on the left column and are compared with those in
the slope during the wet season on the right column. The horizontal displacement increases, and the
vertical displacement decreases as the rainfall rate increases. As a result, the overall deformation
intensifies toward the slope toe, and the unstable zone, in which the factor of safety is less than
one, propagates from the slope toe toward the slope crest and becomes thicker near the slope toe.
The spatial distributions of factor of safety and potential failure index also suggest that the
potential failure may initiate from the slope toe as the rainfall rate increases, and the tension failure
is likely to occur as much as the shear failure along the slope surface near the slope toe.

5. Conclusions

A fully coupled hydrogeomechanical numerical model is presented to analyze rainfall impacts on
groundwater flow in slopes and slope stability. This numerical model is developed based on the
poroelastic governing equations for groundwater flow in deforming variably saturated porous
geologic media and the Galerkin finite element method. Using the model developed, a series of
numerical experiments is performed under two different rainfall rates. The numerical simulation
results show that the overall hydromechanical slope stability deteriorates as the rainfall rate
increases. The numerical simulation results also suggest that the potential failure may initiate from
the slope toe as the rainfall rate increases, and the tension failure is likely to occur as much as the
shear failure along the slope surface near the slope toe. Further numerical studies under various
situations and field applications are recommended to arrive at more general conclusions concerning
the rainfall impacts on groundwater flow in variably saturated slopes and slope stability.
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Figure 1. Spatial distributions of pressure head, total head, and Darcy velocity during the
dry season (left column) and the wet season (right column) between 1990 and 1999.
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