• Title/Summary/Keyword: Pore water

Search Result 1,904, Processing Time 0.026 seconds

Change of Chemical Properties and Nutrient Dynamic in Pore Water of Upland Soil During Flooding (담수에 의한 밭 토양 공극수의 화학적 특성 및 영양분 농도 변화)

  • Kim, Jae-Gon;Chon, Chul-Min;Lee, Jin-Soo
    • Economic and Environmental Geology
    • /
    • v.41 no.3
    • /
    • pp.327-334
    • /
    • 2008
  • Understanding the chemical characteristics of sediments and the nutrient diffusion from sediments to the water body is important in the management of surface water quality. Changes in chemical properties and nutrient concentration of a submerged soil were monitored for 6 months using a microcosm with the thickness of 30cm for upland soil and 15cm of water thickness above the soil. The soil color changed from yellowish red to grey and an oxygenated layer was formed on the soil surface after 5 week flooding. The redox potential and the pH of the pore water in the microcosm decreased during the flooding. The nitrate concentration of the surface water was continuously increased up to $8\;mg\;l^{-1}$ but its phosphate concentration decreased from $2\;mg\;l^{-1}$ to $0.1\;mg\;l^{-1}$ during flooding. However, the concentrations of $NH_4^+$, $PO_4^{3-}$, Fe and Mn in the pore water were increased by the flooding during this period. The increased $NO_3^-$ in the surface water was due to the migration of $NH_4^+$ formed in the soil column and the oxidation to $NO_3^-$ in the surface water. The increased phosphate concentration in the pore water was due to the reductive dissolution of Fe-oxide and Mn-oxide, which scavenged phosphate from the soil solution. The oxygenated layer played a role blocking the migration of phosphate from the pore water to the water body.

Analysis of the Behavior of Undrained Pore Water Pressure in Saturated Sand by Isotropic Loading Test (포화된 사질토에서 등방재하시험에 의한 비배수 공극수압의 거동분석)

  • Eam, Sung-Hoon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.47 no.4
    • /
    • pp.43-52
    • /
    • 2005
  • It is known in some literatures that the B value is not equal to unity in saturated soil when effective stress is given, in which the B Value is the ratio of measured excess pore water pressure and isometric loading pressure. In this study the B value was measured on various effective stresses and on various incremental loading stresses in various grain size of specimens with saturated sand. The test results showed that the B value was affected largely by grain size of sand in specimen and the amount of effective stress. There was the semi-logarithmic relationship between B value and effective stress, and also there was the linear relationship between the gradient of the former semi-logarithmic relationship and grain size of specimen.

Field Test of Recycled Aggregates and Crushed Stone as Horizontal Drains (수평배수재용 순환골재와 쇄석의 현장시험)

  • Kim, Si-Jung;Lee, Dal-Won
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.54 no.1
    • /
    • pp.39-45
    • /
    • 2012
  • In this study, field test on utilization of recycled aggregates and crushed stone as horizontal drains to use an alternative material of sand in soft ground is practiced. The settlement with time showed similarly ranged from 28.4-30.3 cm in the all horizontal materials. The excess pore water pressure of the recycled aggregates and crushed stone showed smaller than sand. The small the excess pore water pressure becomes faster the consolidation period and it can reduces the amount of residual settlement. Therefore, it was verified as having enough to an alternative materials that the field applicability is excellent. The distribution of earth pressure with time showed similarly in the all horizontal materials. The recycled aggregates and crushed stone was very applicable to practice because there is no mat resistance in the horizontal drains layer. The penetration rate in the SCP and PVD improvement sections did not show large differences as the grain size and the horizontal drainage height increases.

Manufacture of Sterilizing Media with Shell Powder and It's Application to the Filter of Water Clarifier (패각분말을 이용한 살균성 메디아의 제조 및 정수기용 필터에 대한 응용)

  • Shin, Choon-Hwan
    • Journal of Environmental Science International
    • /
    • v.15 no.11
    • /
    • pp.1027-1034
    • /
    • 2006
  • Antimicrobial powder was made by exchanging silver ion on calcined oyster shell. On the purpose of application to water clarifier, bail-type media mixed with antimicrobial powder and $0{\sim}30%$ white kaoline were made. The sterilization effect, pore size distribution and zeta potential was tested to indicate the condition for the media of water clarifier. From these tests, it was confirmed that this media have an excellent sterilization power on $G^-\;and\;G^+$ germs. As the concentration of the exchanged silver ion increased, the surface charge density of the anions on the surface of the media also increased. The surface pore size decreased with the concentration of silver ion and 20% more white kaoline ratio. Consequently, mixing ratio of white kaoline would appear to indicate the optimun condition as media have sterilization power.

Stress-Pore Pressure Coupled Finite Element Modeling of NATM Tunneling (NATM 터널의 응력-간극수압 연계 유한요소모델링)

  • Yoo, Chung-Sik;Kim, Sun-Bin
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.189-198
    • /
    • 2006
  • This paper concerns the finite element (FE) modeling approach for NATM tunneling in water bearing ground within the framework of stress-pore pressure coupled analysis. Fundamental interaction mechanism of ground and groundwater lowering was first examined and a number of influencing factors on the results of coupled FE analysis were identified. A parametric study was then conducted on the influencing factors such as soil-water characteristics, location of hydraulic boundary conditions, the way of modeling drainage flow, among others. The results indicate that the soil-water characteristics plays the most important role in the tunneling-induced settlement characteristics. Based on the results, modeling guidelines were suggested for stress-pore prssure coupled finite element modeling of NATM tunneling.

  • PDF

The Behavior of Undrained Pore Water Pressure in Normally Consolidated and Saturated Clay(I) - Analysis by Isotropic Loading Test - (포화된 정규압밀 점성토에서 비배수 공극수압의 거동(I) - 등방재하시험에 의한 분석 -)

  • 임성훈;이달원
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.45 no.4
    • /
    • pp.126-136
    • /
    • 2003
  • The B value on the saturated soil is commonly known as the amount of 1. Usually this concept is consistent with the condition that effective stress is equal to zero, but it was reported in some literatures that the B value was less than 1 in spite of saturated condition in the test of very stiff material such as rock and quasi-stiff material on which the stiffness can be mobilized because of effective stress not equal to zero. In this study the B value was measured on various effective stress conditions on normally consolidated clay. The test results in the B value less than 1 in spite of perfect saturation. The measured excessive pore water pressure was not only smaller than the change of the total stress, but also the function of time on clay.

The shear strength and soil water characteristic curve for Unsaturated Soils (불포화토의 전단 및 함수특성곡선)

  • Lim, Seong-Yoon;Song, Chang-Seob;Lyu, Tae-Jin
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2005.10a
    • /
    • pp.361-366
    • /
    • 2005
  • Since most soils exist above the ground water table, negative pore pressure exist in unsaturated soils. Negative pore water pressure in unsaturated soil affects the soil structure and degree of saturation and it is important for accurate evaluation of unsaturate flow and behavior. This negative pore pressure is called a matric suction which causes an increased shear strength. Therefore, it is required that the effect of increase in the shear strength should be included in a geotechnical analysis. From the test result, the influence of net confining pressure and matric suction on the shear strength was analyzed and strength parameter was increased with matric suction increase and a unliner relationship was found to relate matric suction and shear strength.

  • PDF

A Study on Stability of Earthquake in Estuary Barrage through Shaking Table Test (실내 진동대 실험을 통한 하구둑 구조물의 내진 안정성에 관한 연구)

  • Shin, Eun-Chul;Kang, Hyoun-Hoi;Ryu, Byung-Hyun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09b
    • /
    • pp.38-44
    • /
    • 2010
  • Shaking table tests were performed to reproduce the dynamic behavior of estuary barrage and its subbase soil which can be potentially damaged during earthquake loading. For understanding the vibration effect to the ground during earthquake, the model was formulated with 1/300 scale of prototype estuary barrage and subbase soil. Scott and Iai(1989) proposed the law of the similarity for similar experimental conditions. The laboratory model shaking table test was conducted under the vibration condition of simulated earthquake of 0.154g. The horizontal displacement on the structure was measured during the shaking table test. The pore water pressure was also monitored for the underground layers of soil. The field horizontal displacement and the pore water pressure can be predicted by using the results of the laboratory shaking table test.

  • PDF

Correlation of Piezocone Dissipation Results and Compression Index (피에조콘 소산결과와 압축지수의 상관관계)

  • Park, Young-Hwan;Kang, Beong-Joon;Lee, Jun-Hwan
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.1204-1211
    • /
    • 2008
  • Compression index is one of the important characteristic numbers in soft soil engineering. Since 1940's, many researchers have suggested various practical solutions to define the compression index of clay using other soil properties. But, these results are only can give us an outline of soft soil behavior. In this study, the relationships between pore water pressure dissipation test results and compression index were suggested using comparison results of both tests. This relationships are based on basic concept of consolidation phenomena, essential difference between pore water pressure dissipation test and consolidation test, and disagreements between theoretical time factor and real time factor. To identify proportional factor of proposed equation, Geotechnical investigation results of Kwang-Yang(KY) site and Busan New Port(BN) site were used. The proportional factor was 0.0031 from 20 to 50% of consolidation rate where correlation parameter($R^2$) is 0.9051.

  • PDF

Applications of Disturbed State Concept for the dynamic behaviors of fully saturated soils (포화사질토의 동적거동규명을 위한 교란상태개념의 이용)

  • 최재순;박근보;서경범;김수일
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.03a
    • /
    • pp.140-147
    • /
    • 2003
  • There are many problems in the prediction of soil dynamic behaviors because undrained excess pore water pressure builds up and then the strain softening behavior is occurred simultaneously. A few analytical methods based on the dynamic constitutive model have been proposed but the model hardly predict the excess pore water pressure directly. In this study, the verification on the disturbed state concept (DSC) model, proposed by Dr, Desai was performed. Some laboratory tests such as conventional triaxial tests and cyclic triaxial tests were carried out to determine DSC Parameters and then disturbance values are determined by the proposed equation. Through this verification, it is proved that the disturbed state concept can express reliably the soil dynamic characteristics such as excess pore water pressure and strain softening behavior. It is also found that the critical disturbance which is determined at the minimum curvature of disturbance function can be a the specific index.

  • PDF