• Title/Summary/Keyword: Population genetic diversity

Search Result 606, Processing Time 0.027 seconds

Investigation of genetic variability in commercial and invaded natural populations of red swamp crayfish(Procambarus clarkii) from South Korea (미국가재(Procambarus clarkii) 수족관 개체군 및 국내 침입 자연개체군의 유전적 변이 연구)

  • Ji Hyoun Kang;Jeong Mi Hwang;Soon-Jik Kwon;Min Jeong Baek;Sun-Jae Park;Changseob Lim;Yeon Jae Bae
    • Korean Journal of Environmental Biology
    • /
    • v.41 no.3
    • /
    • pp.325-334
    • /
    • 2023
  • The invasive red swamp crayfish, Procambarus clarkii, is native to south-central United States and northeastern Mexico. Recently, it has been being spreading in the wild in South Korea. However, its primary sources, introduction routes, establishment, and expansion in South Korea remain unclear. Here, we analyzed genetic diversity and population genetic structures of its domestic natural populations during early invasion, commercial stock from local aquaria (a suspected introduction source), and original United States population using mitochondrial COI gene sequences for 267 individuals and eight microsatellite markers for 158 individuals. Natural and commercial populations of P. clarkii showed reduced genetic diversity (e.g., haplotype diversity and allelic richness). The highest genetic diversity was observed in one original source population based on both genetic markers. Despite a large number of individuals in commercial aquaria, we detected remarkably low genetic diversity and only three haplotypes among 226 individuals, suggesting an inbred population likely originating from a small founder group. Additionally, the low genetic diversity in the natural population indicates a small effective population size during early establishment of P. clarkii in South Korea. Interestingly, genetic differentiation between natural populations and the United States population was lower than that between natural populations and aquarium populations. This suggests that various genetic types from the United States likely have entered different domestic aquariums, leading to distinct natural populations through separate pathways. Results of our study will provide an insight on the level of genetic divergence and population differentiation during the initial stage of invasion of non-indigenous species into new environments.

Genetic Diversity and Genetic Structure of Acer pseudosieboldianum Populations in South Korea Based on AFLP Markers (AFLP 마커를 이용한 당단풍나무 집단의 유전다양성과 유전구조)

  • Ahn, Jiyoung;Hong, Kyung-Nak;Baek, Seung-Hoon;Lee, Min-Woo;Lim, Hyo-In;Lee, Jei-Wan
    • Journal of Korean Society of Forest Science
    • /
    • v.105 no.4
    • /
    • pp.414-421
    • /
    • 2016
  • Fourteen Acer pseudosieboldianum populations in South Korea were used to estimate genetic diversity, genetic differentiation and genetic relationships using seven AFLP primer combinations. The average of effective alleles ($A_e$), the proportion of polymorphic loci (%P) and Shannon's diversity index (I) was 1.4, 82.2% and 0.358, respectively. The expected heterozygosity ($H_e$) under Hardy-Weinberg equilibrium was 0.231 and the expected heterozygosity (Hj) from Bayesian inference was 0.253. The level of genetic diversity was moderate compared to those of Genus Acer and lower than those of other species having similar ecological niche and life history. The inbreeding coefficient within populations ($F_{IS}$) from Bayesian method was 0.712 and it could be influenced by selfing or biparental inbreeding to induce homozygote excess. The level of genetic differentiation was 0.107 from AMOVA (${\Phi}_{ST}$) and 0.110 from Bayesian method (${\Phi}^{II}$). The genetic differentiation was lower than those of other species having similar ecological niche and life history. Ulleungdo population had the lowest level of genetic diversity and was genetically the most distinct population from others in the study. We consider that founder effect and genetic drift might be occurred to reduce genetic diversity and then the geographical isolation might interrupt gene flow to aggravate it.

A survey of the genome-wide genetic variation of Hibiscus hamabo (Malvaceae)

  • Geonha HWANG;Ui-Chan JUNG;Sang-Tae KIM
    • Korean Journal of Plant Taxonomy
    • /
    • v.53 no.2
    • /
    • pp.148-156
    • /
    • 2023
  • Hibiscus hamabo (Malvaceae) is a deciduous shrub mainly found in northeast Asia, including China, Japan, and Korea. Due to its limited distribution on Jejudo Island and at several sites in Jeollanam-do in Korea, H. hamabo has been designated as an endangered species by the Ministry of the Environment and has been the subject of several restoration programs. In this study, we quantified genetic variations using double-digestion restriction-associated DNA sequencing technology in 96 individuals of H. hamabo from 13 distinct populations in Korea. We determined 3,352 genome-wide single nucleotide polymorphism loci after stringent filtering processes and analyzed the level of genetic variation within and among populations as well as the population differentiation and genetic ancestry with various assumptions pertaining to the population origin. Our results indicated weak differentiations among populations surveyed in this study but clearly suggested that most of the H. hamabo populations maintain a relatively high level of genetic diversity as evidence of frequent genetic exchanges among populations via outcrossing or sequential gene flows. For a more detailed analysis of the origin of Korean H. hamabo and its demographic history, it will be necessary to expand sampling in China and Japan.

Low Genetic Diversity and Shallow Population Structure of the Japanese Halfbeak Hyporhamphus sajori Revealed from Mitochondrial DNA in the Northeast Asia (Mitochondrial DNA를 이용한 동북아시아 학꽁치 Hyporhamphus sajori의 유전적 다양성과 집단 구조)

  • Gwak, Woo-Seok;Zhang, Qun;Roy, Animesh
    • Korean Journal of Ichthyology
    • /
    • v.31 no.4
    • /
    • pp.187-194
    • /
    • 2019
  • This study was conducted to know the genetic diversity and population structure of Japanese halfbeak (Hyporhamphus sajori) in the Northeast Asia, using mitochondrial DNA control region. In the present study, a total of 70 individuals were collected from three locations of China (Liaoning), Korea (Tongyeong) and Japan (Wakasa Bay), and 47 individuals sequences from three locations of Japan (Wakasa Bay, Toyama Bay and Mikawa Bay) were downloaded from genbank. A total of 7 haplotypes were identified with 7 polymorphic sites from 358 bp length sequences. Haplotype and nucleotide diversity were very low and ranged from 0 to 0.295±0.156 and 0 to 0.0009±0.0011, respectively. Ancestral haplotype was shared by 94% individuals. An extremely low haplotype and nucleotide diversity, and starlike minimum spanning tree indicated that the species have undergone a recent population expansion after bottleneck. Pairwise FST values were low and there was no significant differences among populations suggesting a gene flow among the populations. Dispersal of the eggs with the aid of drifting seaweed and currents might be the major responsible factor for the genetic homogeneity.

Genetic diversity analysis of fourteen geese breeds based on microsatellite genotyping technique

  • Moniem, Hebatallah Abdel;Zong, Yang Yao;Abdallah, Alwasella;Chen, Guo-hong
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.11
    • /
    • pp.1664-1672
    • /
    • 2019
  • Objective: This study aimed to measure genetic diversity and to determine the relationships among fourteen goose breeds. Methods: Microsatellite markers were isolated from the genomic DNA of geese based on previous literature. The DNA segments, including short tandem repeats, were tested for their diversity among fourteen populations of geese. The diversity was tested on both breeds and loci level and by mean of unweighted pair group method with arithmetic mean and structure program, phylogenetic tree and population structure were tested. Results: A total of 108 distinct alleles (1%) were observed across the fourteen breeds, with 36 out of the 108 alleles (33.2%) being unique to only one breed. Genetic parameters were measured per the 14 breeds and the 9 loci. Medium to high heterozygosity was reported with high effective numbers of alleles (Ne). Polymorphic information contents (PIC) of the screened loci was found to be highly polymorphic for eleven breeds; while 3 breeds were reported moderately polymorphic. Breeding coefficient ($F_{IS}$) ranged from -0.033 to 0.358, and the pair wise genetic differentiation ($F_{ST}$) ranged from 0.01 to 0.36 across the fourteen breeds; for the 9 loci observed and expected heterozygosity, and Ne were same as the breeds parameters, PIC of the screened loci reported 6 loci highly polymorphic and 3 loci to be medium polymorphic, and $F_{IS}$ ranged from -0.113 to 0.368. In addition, genetic distance estimate revealed a close genetic distance between Canada goose and Hortobagy goose breeds by 0.04, and the highest distance was between Taihu goose and Graylag goose (anser anser) breed by 0.54. Conclusion: Cluster analyses were made, and they revealed that goose breeds had hybridized frequently, resulting in a loss of genetic distinctiveness for some breeds.

Allozyme Variation and Population Structure of Carex okamotoi (Cyperaceae), a Korean Endemic Species (한국 내 국부적으로 분포하는 지리사초의 알로자임 변이와 집단구조)

  • Huh, Man-Kyu;Choi, Joo-Soo
    • Journal of Life Science
    • /
    • v.20 no.8
    • /
    • pp.1151-1158
    • /
    • 2010
  • The genetic diversity and population structures of fourteen Carex okamotoi (Cyperaceae) populations in Korea were determined using genetic variation at 25 allozyme loci. The Carex okamotoi species is native to Korea. It is endemic to three mountains (Mt. Taeback, Mt. Sobak, and Mt. Noreong) where it is found at 700~1,500 m above sea level. The percentage of polymorphic loci was 40.0%. Genetic diversity at the species level and at the population level was low ($H_{ES}$=0.106; $H_{EP}$=0.094), and the extent of the population divergence was relatively low ($G_{ST}$=0.082). Measurement of deviation from random mating ($F_{IS}$) within the 14 populations was 0.238. An indirect estimate of the number of migrants per generation was 2.78 (Nm=2.78). Analysis of fixation indices revealed a substantial heterozygosity deficiency in some populations and at some loci. Mean genetic identity between populations was 0.986.

Genetic Variation and Structure of the Relict Populations of Korean Arborvitae (Thuja koraiensis Nakai) in South Korea, Employing I-SSR Markers (I-SSR 표지자에 의한 눈측백나무 남한 잔존집단의 유전변이와 구조)

  • Yang, Byeong-Hoon;Song, Jeong-Ho;Lee, Jung-Joo;Hur, Seong-Doo;Hong, Yong-Pyo
    • Journal of Korean Society of Forest Science
    • /
    • v.98 no.1
    • /
    • pp.1-7
    • /
    • 2009
  • We investigated the genetic variation and structure in Korean Arborvitae (Thuja koraiensis Nak.), by 29 examining I-SSR polymorphic loci in 84 individuals distributed among four natural populations in Korea. The level of population genetic diversity ($A_e$=1.44, P=72.42, $H_e$=0.258, S.I.=0.385) was similar to or slightly higher than that of plants with similar ecological traits and life history (Cupressaceae). Most genetic diversity was allocated among individuals within populations (${\Phi}_{ST}$=0.13). The UPGMA dendrogram based on genetic distance failed in showing decisive geographic relationship. The Mt. Bangtae population had the lowest level of genetic diversity and was the most distinctive from the other populations. Mt. Jang population which is possessed of the highest level of genetic variation and Mt. Bangtae population which is consisted of heterogeneous was considered to be a prime candidate for the conservation studies.

Genetic Diversity and Genetic Structure of Phellodendron amurense Populations in South Korea (황벽나무 자연집단의 유전다양성 및 유전구조 분석)

  • Lee, Jei-Wan;Hong, Kyung-Nak;Kang, Jin-Taek
    • Journal of Korean Society of Forest Science
    • /
    • v.103 no.1
    • /
    • pp.51-58
    • /
    • 2014
  • Genetic diversity and genetic structures were estimated in seven natural populations of Phellodendron amurense Rupr in South Korea using ISSR markers. The average of polymorphic loci per primer and the proportion of polymorphic loci per population were 4.5 and 78.8% respectively with total 27 polymorphic loci from 6 ISSR primers. The Shannon's diversity index(I) was 0.421 and the expected heterozygosity($H_e$) was 0.285, which was similar to the heterozygosity (hs =0.287) inferred by Bayesian method. In AMOVA, 7.6% of total genetic variation in the populations was resulted from the genetic difference among populations and the other 92.4% was resulted from the difference among individuals within populations. Genetic differentiation(${\theta}^{II}$) and inbreeding coefficient(f) for total population were estimated to be 0.066 and 0.479 by Bayesian method respectively. In Bayesian clustering analysis, seven populations were assigned into three groups. This result was similar to the results of genetic relationships by UPGMA and PCA. The first group included Hwachoen, Gapyeong, Bongpyeong and Yongpyeong population, and the second included two populations in Sancheong region. Muju population was discretely assigned into the third group in spite of the geographically short distance from the Sancheong region. There was no significant correlation between genetic relationship and geographic distribution among populations in Mantel's test. For conservation of the phellodendron trees, it would be effective to consider the findings resulted from this study with ecological traits and life histories of this species.

An analysis of the genetic diversity of a riparian marginal species, Aristolochia contorta (수변 경계종인 쥐방울덩굴의 유전적 다양성 분석)

  • Nam, Bo Eun;Park, Hyun Jun;Son, Ga Yeon;Kim, Jae Geun
    • Journal of Wetlands Research
    • /
    • v.22 no.2
    • /
    • pp.100-105
    • /
    • 2020
  • Northern pipevine (Aristolochia contorta) commonly inhabits marginal areas between waterside and terrestrial vegetation. In particular, A. contorta is ecologically important in the marginal areas as a food plant of dragon swallowtail butterfly (Sericinus montela), which is designated as vulnerable species in the Republic of Korea. For long-term sustainability of the plant population, assessment of the genetic diversity of exist populations should be conducted. Genomic DNA of A. contorta leaf samples were extracted from four populations where the vigorous growth were observed in the South Korea. Intra-population genetic diversity and inter-population genetic distance were assessed using randomly amplified polymorphic DNA (RAPD) with five polymorphic random primers. Overall genetic diversity was lower, compared to other wetland species (h: 0.0607 ~ 0.1401; I: 0.0819 ~ 0.1759), while GP showed the highest intra-population genetic diversity. Despite of the geographical distance, GP showed the larger genetic distance from other populations. This result seemed to be caused by the fragmented habitat and lower sexual reproduction of A. controta. Mixture of the different source populations and construction of the proper environmental condition such as shade and physical support for sexual reproduction should be considered for conservation of A. contorta population.