DOI QR코드

DOI QR Code

Genetic Diversity and Genetic Structure of Phellodendron amurense Populations in South Korea

황벽나무 자연집단의 유전다양성 및 유전구조 분석

  • Lee, Jei-Wan (Division of Forest Genetic Resources, Korea Forest Research Institute) ;
  • Hong, Kyung-Nak (Division of Forest Genetic Resources, Korea Forest Research Institute) ;
  • Kang, Jin-Taek (Center for Forest & Climate Change, Korea Forest Research Institute)
  • 이제완 (국립산림과학원 산림유전자원과) ;
  • 홍경낙 (국립산림과학원 산림유전자원과) ;
  • 강진택 (국립산림과학원 기후변화센터)
  • Received : 2013.09.11
  • Accepted : 2014.03.14
  • Published : 2014.03.31

Abstract

Genetic diversity and genetic structures were estimated in seven natural populations of Phellodendron amurense Rupr in South Korea using ISSR markers. The average of polymorphic loci per primer and the proportion of polymorphic loci per population were 4.5 and 78.8% respectively with total 27 polymorphic loci from 6 ISSR primers. The Shannon's diversity index(I) was 0.421 and the expected heterozygosity($H_e$) was 0.285, which was similar to the heterozygosity (hs =0.287) inferred by Bayesian method. In AMOVA, 7.6% of total genetic variation in the populations was resulted from the genetic difference among populations and the other 92.4% was resulted from the difference among individuals within populations. Genetic differentiation(${\theta}^{II}$) and inbreeding coefficient(f) for total population were estimated to be 0.066 and 0.479 by Bayesian method respectively. In Bayesian clustering analysis, seven populations were assigned into three groups. This result was similar to the results of genetic relationships by UPGMA and PCA. The first group included Hwachoen, Gapyeong, Bongpyeong and Yongpyeong population, and the second included two populations in Sancheong region. Muju population was discretely assigned into the third group in spite of the geographically short distance from the Sancheong region. There was no significant correlation between genetic relationship and geographic distribution among populations in Mantel's test. For conservation of the phellodendron trees, it would be effective to consider the findings resulted from this study with ecological traits and life histories of this species.

본 연구는 ISSR 표지자를 이용하여 국내 분포하는 황벽나무 7개 집단의 유전다양성과 유전구조를 분석하였다. 6개의 ISSR primer를 이용하여 분석한 결과 primer 당 평균 4.5개의 다형성 band를 확인하였고, 각 집단의 다형성 유전자좌의 비율은 평균 78.8%로 나타났다. Shannon의 유전다양성 지수(I)는 0.421로 나타났고, 이형접합체 기대치($H_e$)는 평균 0.285로 베이즈 방법을 이용한 평균 이형접합체 기대치(hs=0.287)와 유사하였다. AMOVA에서 전체 유전변이의 92.4%가 집단내 개체간 차이에 기인하며, 7.6%는 집단간 차이에 기인하였다. 베이즈 방법을 이용한 유전분화(${\theta}^{II}$)는 0.066으로 추정되었으며, 전체 집단의 근친교배율(f)은 0.479로 계산되었다. 유연관계 분석과 베이즈 군집분석결과 우리나라 황벽나무 집단은 가평, 화천, 봉평, 용평이 하나의 군집을 형성하였고, 산청 지역의 2개 집단(삼장 및 시천)이 다른 하나의 군집을 형성하였으며, 무주 집단이 산청지역의 집단과 지리적으로 근접함에도 불구하고 독립적인 군집을 나타내었다. Mantel's test 결과 집단간 유전적 유연관계와 지리적 분포의 상관성은 나타나지 않았다. 황벽나무의 유전자원보존을 위한 대상 집단 선정 시 생태적 및 생활사적 특징과 함께 본 연구결과에서 나타난 유전다양성과 군집구조 분석결과를 고려하는 것이 효과적일 것으로 사료된다.

Keywords

References

  1. Bae, K.H., Kim, J.S., Hong, J.K., Oh, S.H., Cho, H.J., and Yoon, C.W. 2009. A Study on Vascular Plants in Mt. Myobong, Seokpo-ri, Bonghwa-Gun. The Journal of Korean Institute of Forest Recreation 13: 35-44.
  2. Cho, K.J., Chung, J.M., Kim, W.W., Hong, Y.P., and Jang, S.S. 2002. Population Genetic Structure of Three Fraxinus Species in Korea. Symposium on population and evolutionary genetics of forest trees. Star Lesn, Slovakia. August 25-29. pp. 53.
  3. Cho, K.J., Chung, J.M., Kim, W.W., Kim, Y.M., and Hong, Y.P.. 2002. Genetic Variation of Populations of Fracinus mandshurica Rupr. in Korea (Oleaceae) Based on I-SSR Marker Analysis. Proceedings of Korean Forest Society pp. 114-115.
  4. Choi, C.H. and Seo, B.S. 2009. Effect of Soaking and Prechilling Treatment on Seed Germination of Phellodendron amurense Rupr. Korean Journal of Plant Resources 22: 111-115.
  5. Evanno, G., Regnaut, S. and Goudet, J. 2005. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Molecular Ecology 14: 2611-2620. https://doi.org/10.1111/j.1365-294X.2005.02553.x
  6. Felsenstein, J. 2005. PHYLIP (phylogeny inference package) version 3.65. Department of Genome Sciences, University of Washington, Seattle (Distributed by the author).
  7. Foll, M., Beaumont, M.A., and Gaggiotti, O. 2008. An approximate Bayesian computation approach to overcome biases that arise when using amplified fragment length polymorphism markers to study population structure. Genetics 179: 927-939. https://doi.org/10.1534/genetics.107.084541
  8. Gao, P., Kang, M., Wang, J., Te, Q., and Huang, H. 2009. Neither biased sex ratio nor spatial segregation of the sexes in the subtropical dioecious tree Eurycorymbus cavaleriei (Sapindaceae). Journal of Intergrative Plant Biology 51: 604-613. https://doi.org/10.1111/j.1744-7909.2009.00827.x
  9. Gaudeul, M., Taberlet, P., and Till-Bottraud, I. 2000. Genetic diversity in an endangered alpine plant, Eryngium alpinum L. (Apiaceae), inferred from amplified fragment length polymorphism markers. Molecular Ecology 9: 1625-1637. https://doi.org/10.1046/j.1365-294x.2000.01063.x
  10. Hamrick, J.L. and Godt, M.J.W. 1996. Effects of life history traits on genetic diversity in plant species. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences 351(1345): 1291-1298. https://doi.org/10.1098/rstb.1996.0112
  11. Holsinger, K.E., Lewis, P.O., and Dey, D.K. 2002. A Bayesian approach to inferring population structure from dominant markers. Molecular Ecology 11: 1157-1164. https://doi.org/10.1046/j.1365-294X.2002.01512.x
  12. Hong, K.N., Lee, J.W., and Kang, J.T. 2013. Genetic Diversity and Population Genetic Structure of Exochorda serratifolia in South Korea. Journal of Korean Forest Society 102(1): 122-128. https://doi.org/10.14578/jkfs.2013.102.1.122
  13. Honnay, O. and Jacquemyn, H. 2007. Suceptibility of common and rare plant species to the genetic consequences of habitat fragmentation. Conservation Biology 21: 823-831. https://doi.org/10.1111/j.1523-1739.2006.00646.x
  14. Hu, L.J., Uchiyama, K., Saito, Y., and Ide, Y. 2010. Contrasting patterns of nuclear microsatellite genetic structure of Fraxinus mandshurica var. japonica between northern and southern populations in Japan. Journal of Biogeography 37(6): 1131-1143. https://doi.org/10.1111/j.1365-2699.2010.02275.x
  15. Hughes, A.R., Inouye, B.D., Johnson, M.T.C., Underwood, N. and Vellend, M. 2008. Ecological consequences of genetic diversity. Ecology Letters 11: 609-623. https://doi.org/10.1111/j.1461-0248.2008.01179.x
  16. Jang, I.G., Bae, K.H., and Kim, J.S. 2008. A Study on Forest Vegetation in Baekcheon Valley. The Journal of Korean Institute of Forest Recreation 12: 27-37.
  17. Jo, H.J., Lee, S.K., Kang, H.Y., Choi, D.H., and Lee, T.S. 2008. A Study on the Extractives and Antioxidation Activity of Phellodendron Amurense and Pueraria Thunbergiana. Forest Bioenergy 27: 19-25.
  18. Jump, A.S., Marchant, R., and Penuelas, J. 2008. Environmental change and the option value of genetic diversity. Trends in Plant Science 14: 51-58.
  19. Kim, J.H., Goo, G.H., Choi, M.S., and Park, Y.G. 1992. Micropropagation and Soil Adjustment of Cork Tree (Phellodendron amurense Rupr.) through in Vitro Culture. Korean Journal of Plant Tissue Culture 19(1): 37-42.
  20. Kim, K.E., Kim J.H., Hong, S.K., Kim, T., and Kim, D. 2010. Anti-acen and Anti-atopic Dermatitis Effect of Plant Extracts Including Eucommia ulmoides Oliv and Phellodendron amurense. Korean Chemical Engineering Research 48(6): 700-703.
  21. Kong, W.S. 2003. Vegetation History of the Korean Peninsula. Acanet. Seoul. Korea. pp. 580.
  22. Korea National Arboretum. 2010. A Field Guide to Trees & Shrubs. Geobook. Seoul. Korea. pp.726.
  23. Koskela, J., Lefevre, F., Schueler, S., Kraigher, H., Olrik, D.C., Hubert, J., Longauer, R., Bozzano, M., Yrjana, L., Alizoti, P., Rotach, P., Vietto, L., Bordacs, S., Myking, T., Eysteinsson, T., Souvannavong, T., Fady, B., Cuyper, B.D., Heinze, B., Wuhlisch, G.V., Ducousso, A., and Ditlevsen, B., 2013. Translating conservation genetics into management: Pan-European minimum requirements for dynamic conservation units of forest tree genetic diversity. Biological Conservation 157: 39-49. https://doi.org/10.1016/j.biocon.2012.07.023
  24. Lee, H.S., Chang, C.S, Kim, H., and Choi, D.Y. 2009. A preliminary population genetic study of an overlooked endemic ash, Fraxinus chiisanensis in Korea using allozyme variation. Journal of Korean Forest Society 98: 531-538.
  25. Ma, J.S., Cao, W., Liu, Q.R., Yu, M., and Han, L.J. 2006. A revision of the genus Phellodendron (Rutaceae). Edinburgh Journal of Botany 63: 131-151. https://doi.org/10.1017/S0960428606000515
  26. Nybom, H. 2004. Comparison of different nuclear DNA markers for estimating intraspecific genetic diversity in plants. Molecular Ecology 13: 1143-1155. https://doi.org/10.1111/j.1365-294X.2004.02141.x
  27. Peakall, R.O.D. and Smouse, P.E. 2006. GENALEX 6: genetic analysis in Excel population genetic software for teaching and research. Molecular Ecology Notes 6: 288-295. https://doi.org/10.1111/j.1471-8286.2005.01155.x
  28. Pritchard, J.K., Stephens, M., and Donnelly, P. 2000. Inference of population structure using multilocus genotype data. Genetics 155: 945-959.
  29. Provan, J., Beatty, G.E., Hunter, A.M., McDonald, R.A., McLaughlin, E., Preston, S.J., and Wilson, S. 2008. Restricted gene flow in fragmented populations of a wind-pollinated tree. Conservation Genetics 9(6): 1521-1532. https://doi.org/10.1007/s10592-007-9484-y
  30. Rossetto, M. 2006. Impact of habitat fragmentation of plant populations. pp. 117-129. In: J. Henry, ed. Plant Conservation Genetics. Haworth Press, Inc. NY. USA.
  31. Spielman, D., Brook, B.W., and Frankham, R. 2004. Most species are not driven to extinction before genetic factors impact them. Proceedings of the National Academy of Sciences, USA 101: 15261-15264. https://doi.org/10.1073/pnas.0403809101
  32. White, T.L., Adams, W.T., and Neale, D.B. 2007. Forest Genetics. Cromwell Press, UK. pp. 682.
  33. Yan, Z.F., Zhang, B.G., Zhang, Z.O., and Yu, J.L. 2006. Genetic diversity in wild populations of Phellodendron amurense, a rare and endangered medicinal plant, detected by AFLP. Biodiversity Science 14: 488-497. https://doi.org/10.1360/biodiv.060041
  34. Yeh, F.C. and Boyle, T.J.B. 1997. Population genetic analysis of co-dominant and dominant markers and quantitative traits. Belgian Journal of Botany 129: 157.
  35. Young, A., Boyle, T., and Brown T. 1996. The population genetic consequences of habitat fragmentation for plants. Trends in Ecology and Evoultion 11: 413-418. https://doi.org/10.1016/0169-5347(96)10045-8
  36. Yu, J.H., Chen, C.M., Han, S.J., Guo, X.R., Yuan, S.S., Wang, C.J., and Zu, Y.G. 2013. Development and Characterization of Polymorphic Microsatellite Loci in Phellodendron amurense (Rutaceae). Applications in Plant Sciences 1(3): 1200321. https://doi.org/10.3732/apps.1200321
  37. Zhu, N. and Dong, D.H. 1990. Seed dispersal, dormancy, seed bank and regernation of Amur Corktree. Journal of Northeast Forest University 1: 16-22.

Cited by

  1. Genetic Diversity and Genetic Structure of Acer pseudosieboldianum Populations in South Korea Based on AFLP Markers vol.105, pp.04, 2016, https://doi.org/10.14578/jkfs.2016.105.4.414
  2. Impact of Habitat Damage on Wikstroemia ganpi (Siebold & Zucc.) Maxim. Genetic Diversity and Structure vol.52, pp.2, 2018, https://doi.org/10.14397/jals.2018.52.2.33
  3. Genetic variation and structure of Juniperus chinensis L. (Cupressaceae) in Korea vol.42, pp.9, 2014, https://doi.org/10.1186/s41610-018-0073-4
  4. Genetic diversity and structure of Carpinus laxiflora populations in South Korea based on AFLP markers vol.15, pp.4, 2014, https://doi.org/10.1080/21580103.2019.1666748
  5. 60 Years of Forest Tree Improvement in Korea : Accomplishments and Prospects vol.52, pp.1, 2020, https://doi.org/10.9787/kjbs.2020.52.s.179
  6. Genetic diversity and structure of Prunus padus populations in South Korea based on AFLP markers vol.16, pp.4, 2014, https://doi.org/10.1080/21580103.2020.1807415