Genetic Variation and Structure of the Relict Populations of Korean Arborvitae (Thuja koraiensis Nakai) in South Korea, Employing I-SSR Markers

I-SSR 표지자에 의한 눈측백나무 남한 잔존집단의 유전변이와 구조

  • Yang, Byeong-Hoon (Division of Forest Genetic Resources, Korea Forest Research Institute) ;
  • Song, Jeong-Ho (Division of Forest Genetic Resources, Korea Forest Research Institute) ;
  • Lee, Jung-Joo (Division of Forest Genetic Resources, Korea Forest Research Institute) ;
  • Hur, Seong-Doo (Division of Forest Genetic Resources, Korea Forest Research Institute) ;
  • Hong, Yong-Pyo (Division of Forest Genetic Resources, Korea Forest Research Institute)
  • 양병훈 (국립산림과학원 산림유전자원부) ;
  • 송정호 (국립산림과학원 산림유전자원부) ;
  • 이정주 (국립산림과학원 산림유전자원부) ;
  • 허성두 (국립산림과학원 산림유전자원부) ;
  • 홍용표 (국립산림과학원 산림유전자원부)
  • Received : 2008.08.27
  • Accepted : 2009.03.17
  • Published : 2009.03.31

Abstract

We investigated the genetic variation and structure in Korean Arborvitae (Thuja koraiensis Nak.), by 29 examining I-SSR polymorphic loci in 84 individuals distributed among four natural populations in Korea. The level of population genetic diversity ($A_e$=1.44, P=72.42, $H_e$=0.258, S.I.=0.385) was similar to or slightly higher than that of plants with similar ecological traits and life history (Cupressaceae). Most genetic diversity was allocated among individuals within populations (${\Phi}_{ST}$=0.13). The UPGMA dendrogram based on genetic distance failed in showing decisive geographic relationship. The Mt. Bangtae population had the lowest level of genetic diversity and was the most distinctive from the other populations. Mt. Jang population which is possessed of the highest level of genetic variation and Mt. Bangtae population which is consisted of heterogeneous was considered to be a prime candidate for the conservation studies.

본 연구에서는 눈측백나무(Thuja koraiensis Nakai) 4개 천연집단을 대상으로 84개체를 선발한 뒤 다형성을 보인 29개의 I-SSR amplicons를 이용하여 유전변이를 조사하였다. 6개의 I-SSR primer로 유전다양성을 추정한 결과 평균 유효대립유전자의 수($A_e$)는 1.44개, 이형접합도의 기대치($H_e$)는 0.258, Shannon의 다양성 지수(S.I.)는 0.385로 크게 높지는 않은 것으로 추정되었다. 이를 다양한 표지자를 이용하여 측백나무과(Cupressaceae)에 속하는 지금까지 연구된 수종들과 비교하여보면 국내의 눈측백나무는 유사하거나 다소 높은 유전변이량을 보유하고 있는 것으로 나타났다. 조사된 4개의 집단을 대상으로 AMOVA를 수행한 결과 전체 유전변이 가운데 13%가 집단간 차이로부터 기인하는 것으로 나타났고, 나머지 87%는 집단내 개체간 차이로부터 기인한 것으로 나타났다. 유전적 거리에 의한 UPGMA 유집분석을 실시한 결과 지리적인 경향은 나타나지 않았다. 유전변이량이 가장 높은 장산집단과 유전적 조성에서 가장 이질적인 방태산집단이 보전 가치가 큰 것으로 판단된다.

Keywords

References

  1. 공우석. 2003. 한반도 식생사. 대우학술총서. 서울. pp. 33
  2. 김찬수, 이석우, 고정군. 2007. 한라산의 구상나무. 제주특별자치도 한라산연구소. 제주도. pp. 104
  3. 산림청. 1997. 희귀 및 멸종위기 식물도감. 도서출판생명의 나무. 서울. pp. 23
  4. 송정호, 이정주, 구영본, 이갑연, 한상돈, 양병훈. 2006. 희귀식물 눈측백나무(Thuja koraiensis Nak.)의 삽목증식. 한국임학회지 95(4): 393-397
  5. 이석우, 김선창, 임경빈, 한상돈, 김원우. 1997. 희귀수종 모감주나무 자생 집단의 잎의 형태적 특성, 식생특성 및 유전변이. 한국임학회지 86(2): 167-176
  6. 이창복. 1979. 대한식물도감. 향문사. 서울. pp. 67
  7. 한상돈, 홍용표, 권해연, 양병훈, 김찬수. 2005. 들쭉나무격리잔존 2개 집단의 유전변이. 한국임학회지 94(4): 209-213
  8. 홍용표, 권해연, 양병훈, 이석우, 김찬수, 한상돈. 2004. 설악산 격리 잔존 눈잣나무 집단의 유전적 성상. 한국임학회지 93(5): 393-400
  9. Anderson, E. 1963. Seed stands and seed orchards in the breeding of conifers. Word Consult. For. Gen. and For. Tree Imp. Proc. II. FAO/Forgen. 63-8/1: 11-18
  10. Black, W.C. 1996. RAPDDIST 1.0., RAPDPLOT 2.4. Department of Microbiology, Colorado State University, Fort Collins, CO. USA
  11. Chung, J.M., Lee, B.C., Kim, J.S., Park, C.W., Chung, M.Y. and Chung, M.G. 2006. Fine-scale genetic structure among genetic individuals of the clone-forming monotypic genus Echinosophora koreensis (Fabaceae). Annals of Botany 98(1): 165-173 https://doi.org/10.1093/aob/mcl083
  12. Excoffier, L., Smouse, P.E. and Quattro, J.M. 1992. Analysis of molecular variance inferred from metric distance among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131: 479-491
  13. Hamrick, J.L. and Godt, M.J.W. 1996. Conservation genetics of endemic plant species. In: Avise, J.C., Hamrick, J.L. eds. Conservation genetics. Case histories from nature. Chapman and Hall. New York pp. 281-304
  14. Hamrick, J.L., Godt, M.J.W. and Sherman-Broyles, S. 1992. Factors influencing levels of genetic diversity in woody plant species. In Population Genetics of Forest Trees. Ed by Adams, W. et al. Kluwer Academid Publishers, Netherlands. pp. 95-124
  15. Hong, Y.P., Kwon, H.Y., Kim, Y.Y., Kim, C.S. and Han, S.D. 2003. Distribution of I-SSR variants in natural populations of Smile Rosebay (Rhododendron schlippenbachii Maxim.) in Korea. Jour. Korean For. Soc. 92(5): 497-503
  16. Hong, Y.P., Kwon, H.Y., Kim, K.S., Hong, K.N. and Kim, Y.Y. 2004. Discordance between geographical distribution and genetic relationship among populations of Japanese red pine in Korea revealed by analysis of I-SSR markers. Silvae Genetica 53(3): 89-92
  17. Hong, Y.P., Cho, K.J., Kim, Y.Y., Shin, E.M. and Pyo, S.K. 2000. Diversity of I-SSR variants in the populations of Torreya nucifera. Journal of Korean Forest Society 89(2): 167-172
  18. Hong, Y.P., Cho, K.J., Hong, K.N. and Shin. E.M. 2001. Diversity of I-SSR variants in Gingko biloba L. plant in 6 regions of Korea. Journal of Korean Forest Society 90(2):169-175
  19. Huh, M.K., and Huh, H.W. 2000. Genetic diversity and population structure of Juniperus rigida (Cupressaceae) and Juniperus coreana. Evol. Ecol. 14: 87-98 https://doi.org/10.1023/A:1011090013749
  20. Kong, W.S. and Watts, D. 1993. The plant geography of Korea with an emphasis on the alpine zones. Kouwer Acdemic Publishers Group. Netherlands. pp. 229
  21. Kuser, J.E., Meagher, T.R., Sheely, D.L. and White, A. 1997. Allozyme frequencies in New Jersey and North Carolina populations of Atlantic white-cedar, Chamaecyparis thyoides (Cupressaceae). Am. J. Bot. 84: 1536-1541 https://doi.org/10.2307/2446615
  22. Kwon, H.Y. and Kim, Z.S. 2002. I-SSR variation within and among korean populations in Taxus cuspidata. Jour. Korean For. Soc. 91: 654-660
  23. Lee, S.W., Kim, Y.M., Kim, W.W. and Chung, J.M. 2002. Genetic variation of I-SSR markers in the natural populations of rare and endangered tree species, Oplopanax elatus in Korea. Jour. Korean For. Soc. 91(5): 565-573
  24. Milligan, B.G., Leebens-Mack, J. and Strand, A.E. 1994. Conservation genetics beyond the maintenance of marker diversity. Molecular Ecology 3: 423-435 https://doi.org/10.1111/j.1365-294X.1994.tb00082.x
  25. National Research Council. 1991. Managing global genetic resources. National Academy Press. Washington, D.C. pp.228
  26. Nybom, H. and Bartish, I.V. 2000. Effects of life history traits and sampling strategies on genetic diversity estimates obtained with RAPD markers in plants. Perspectives in Plant Ecology, Evolution and Systematics 3: 93-114 https://doi.org/10.1078/1433-8319-00006
  27. Page, R.D.M. 1996. TREEVIEW: An application to display phylogenetic trees on personal computers. Computer Applications in the Biosciences 12: 357-358
  28. Perry, D.J., Knowles, P. and Yeh, F.C. 1990. Allozyme variation of Thuja occidentalis L. in northwestern Ontario. Biochem. Syst. Ecol. 18: 111-115 https://doi.org/10.1016/0305-1978(90)90045-H
  29. Rakoczy-Trojanowska, M. and Bolibok, H. 2004. Characteristics and a comparison of three classes of microsatellite based markers and their application in plants. Cellular & Molecular Biology Letters 9(2): 221-238
  30. Ritland, C., Pape, T. and Ritland, K. 2001. Genetic structure of yellow cedar (Chamaecyparis nootkatensis). Can. J. Bot. 79: 822-828 https://doi.org/10.1139/cjb-79-7-822
  31. Schneider, S., Roessli, D. and Excoffier, L. 2000. ARLEQUIN:a software for population genetics data analysis Version 2000. Genetics and Biometry Laboratory, Department of Anthropology. University of Geneva, Geneva, Switzerland
  32. Shannon, C.E. 1948. A mathematical theory of communication. Bell System Tech. J. 27: 379-656
  33. Wang, D.L., Li, Z.C., Hao, G., Chiang, T.Y. and Ge, X.J. 2004. Genetic diversity of Calocedrus macrolepis (Cupressaceae) in southwestern China. Biochemical Systematics and Ecology 32: 797-807 https://doi.org/10.1016/j.bse.2003.12.003
  34. Wright, J.W. 1962. Genetic of forest tree improvement. FAO Forestry and Forest Products Studies 16: 1-399
  35. Wright, S. 1978. Evolution and genetics of population. Vol. 4. Variability within and among natural populations. University of Chicago Press, Chicago, USA
  36. Yeh, F.C. 1988. Isozyme variation of Thuja plicata (Cupres saceae) in British Columbia. Biochem. Syst. Ecol. 16: 373-377 https://doi.org/10.1016/0305-1978(88)90028-2
  37. Yeh, F.C., Yang, R.C. and Boyle, T. 1999. POPGENE. Microsoft Windows-based freeware for population genetic analysis. Release 1.31. University of Alberta, Edmonton, Canada