• 제목/요약/키워드: Polyvinyl Alcohol Fiber

검색결과 100건 처리시간 0.024초

Experimental and analytical investigation of the shear behavior of strain hardening cementitious composites

  • Georgiou, Antroula V.;Pantazopoulou, Stavroula J.
    • Structural Engineering and Mechanics
    • /
    • 제72권1호
    • /
    • pp.19-30
    • /
    • 2019
  • The mechanical behavior of Fiber Reinforced Cementitious Composites (FRCC) under direct shear is studied through experiment and analytical simulation. The cementitious composite considered contains 55% replacement of cement with fly ash and 2% (volume ratio) of short discontinuous synthetic fibers (in the form of mass reinforcement, comprising PVA - Polyvinyl Alcohol fibers). This class of cementitious materials exhibits ductility under tension with the formation of multiple fine cracks and significant delay of crack stabilization (i.e., localization of cracking at a single location). One of the behavioral parameters that concern structural design is the shear strength of this new type of fiber reinforced composites. This aspect was studied in the present work with the use of Push-off tests. The shear strength is then compared to the materials' tensile and splitting strength values.

Experimentally evaluating the seismic retrofitting of square engineered cementitious composite columns using CFRP

  • Akhtari, Alireza;Mortezaei, Alireza;Hemmati, Ali
    • Structural Engineering and Mechanics
    • /
    • 제78권5호
    • /
    • pp.545-556
    • /
    • 2021
  • The present experimental study evaluated the seismic performance of six engineered cementitious composite (ECC) columns strengthened with carbon fiber reinforced polymer (CFRP) laminates under cyclic lateral loading. The ECC columns damaged and crushed in the first stage of cyclic tests were repaired using the ECC with a certain polyvinyl alcohol (PVA) fiber and strengthened with flexural and sheer CFRP laminates and then re-assessed under the cyclic loading. The effects of some variables were examined on lateral displacement, energy absorption and dissipation, failure modes, crack patterns, load bearing capacity and plasticity, and the obtained results were compared with those of the first stage of cyclic tests. The results showed that retrofitting the ECC columns can improve their performance, plasticity and load-bearing threshold, delayed the concrete failure, changed the failure modes and increased the energy absorbed by the strengthened columns element by over 50%.

Analysis of the Mechanical Properties of High-Tension Performance Biochar Concrete Reinforced with PVA Fibers Based on Biochar Cement Replacement Ratio

  • Kim, Sangwoo;Lee, Jihyeong;Hong, Yeji;Kim, Jinsup
    • 대한토목학회논문집
    • /
    • 제44권5호
    • /
    • pp.603-613
    • /
    • 2024
  • This study evaluated the mechanical properties of high-tension performance biochar concrete, focusing on the effects of varying biochar cement replacement ratios (0 %, 1 %, 2 %, 3 %, 4 %, and 5 %). Mechanical properties, including compressive strength, tensile strength, and flexural strength, were tested. The results showed a general decrease in compressive strength with increasing biochar replacement, with significant reductions at 1 % to 3 % levels. PVA fiber reinforcement improved long-term compressive strength, particularly at higher biochar levels. Tensile and flexural strength also showed initial reductions with low biochar levels but improved at higher replacement levels. PVA fibers consistently enhanced tensile and flexural strength. SEM images confirmed the integration of biochar and PVA fibers into the cement matrix, enhancing microstructural density and crack resistance.

PET 섬유를 사용한 친환경 난연지 제조방법에 대한 연구 (Manufacture of Environmentally-friendly Flame-retardant Paper with Polyethylene Terephthalate (PET) Short Cut Fiber)

  • 김지섭;이명구
    • 펄프종이기술
    • /
    • 제44권5호
    • /
    • pp.14-20
    • /
    • 2012
  • In this paper, the flame-retardant wall paper was successfully prepared with recycled polyethylene terephthalate (PET) short cut fiber with flame-retardant property and wood pulp using polyvinyl alcohol (PVA) as binder followed by treatment of non-halogen flame retardant. Physical properties such as formation index, tensile strength, elongation, and burst strength increased as defibrillation increased except tear strength. Bulk increased but formation index, tensile strength, elongation and burst strength decreased along with addition of PET short cut fiber. It was also found that tear strength rose significantly up to 30% of PET short cut fiber and then declined (fell) rapidly. As addition level of PVA increased tensile strength, elongation and burst strength increased, but tear strength decreased slightly. Addition of 20% of PET short cut fiber and 13% of PVA provided the flame-retardant wall paper with both improved flameproofing and physical properties.

기포제 적용 빛 감성 친화형 콘크리트의 휨 특성 예측 모델 (Prediction Model of Flexural Properties of LEFC using Foaming Agent)

  • 김병일;서승훈
    • 한국건축시공학회지
    • /
    • 제19권1호
    • /
    • pp.9-18
    • /
    • 2019
  • 현대에 가장 널리 쓰이는 건축 재료인 콘크리트는 기술의 지속적인 발전에 따라 고강도화 뿐만 아니라 인성 및 연성의 증가, 경량화와 같은 구조적 성능의 향상이 되었다. 또한 인간의 삶의 질이 향상됨에 따라 감성을 충족시킬 수 있는 것에 대한 수요의 급증으로 건축용 외장패널 그리고 건축의 경계를 넘어 인테리어 소품으로까지 다양하게 쓰이는 추세이다. 국내에서는 플라스틱 봉을 삽입하여 빛과 콘크리트의 결합으로 사용자의 감성을 자극하는 빛 감성친화형콘크리트(LEFC)를 개발하였으나, 높은 단위중량으로 인한 현장에서의 시공성 한계를 보여주었다. 이에 본 연구에서는 LEFC에 기포제를 적용하여 단위중량을 감소시켜 경량화를 달성하고 휨 성능 향상을 위해 두 가지 유기섬유(Nylon Fiber, Polyvinyl Alcohol)를 혼입하여 비교분석하였다. 마지막으로 플라스틱 봉 삽입으로 인한 콘크리트 비표면적 손실 및 봉과의 부착력 감소로 인한 휨 강도 변화를 봉의 직경(5mm, 10mm)과 간격(10mm, 15mm, 20mm)에 따른 변수를 적용한 예측 모델을 제안하고자 한다.

Pseudo-strain hardening and mechanical properties of green cementitious composites containing polypropylene fibers

  • Karimpour, Hossein;Mazloom, Moosa
    • Structural Engineering and Mechanics
    • /
    • 제81권5호
    • /
    • pp.575-589
    • /
    • 2022
  • In order to enhance the greenness in the strain-hardening composites and to reduce the high cost of typical polyvinyl alcohol fiber reinforced engineered cementitious composite (PVA-ECC), an affordable strain-hardening composite with green binder content has been proposed. For optimizing the strain-hardening behavior of cementitious composites, this paper investigates the effects of polypropylene fibers on the first cracking strength, fracture properties, and micromechanical parameters of cementitious composites. For this purpose, digital image correlation (DIC) technique was utilized to monitor crack propagation. In addition, to have an in-depth understanding of fiber/matrix interaction, scanning electron microscope (SEM) analysis was used. To understand the effect of fibers on the strain hardening behavior of cementitious composites, ten mixes were designed with the variables of fiber length and volume. To investigate the micromechanical parameters from fracture tests on notched beam specimens, a novel technique has been suggested. In this regard, mechanical and fracture tests were carried out, and the results have been discussed utilizing both fracture and micromechanical concepts. This study shows that the fiber length and volume have optimal values; therefore, using fibers without considering the optimal values has negative effects on the strain-hardening behavior of cementitious composites.

보강 섬유로서 현무암 섬유의 공학적 특성 (Engineering Property of Basalt Fiber as a Reinforcing Fiber)

  • 최정일;장유현;이재원;이방연
    • 한국건설순환자원학회논문집
    • /
    • 제3권1호
    • /
    • pp.84-89
    • /
    • 2015
  • 현무암섬유는 높은 인장강도와 콘크리트와 유사한 밀도를 갖기 때문에 콘크리트 보강 섬유로서 장점을 갖고 있다. 이 연구에서는 현무암섬유의 부착 특성과 섬유 배향각에 따른 현무암섬유의 인장 강도 특성을 조사하였다. 이를 위하여 현무암섬유와 폴리비닐알코올섬유에 대한 섬유 인발 실험을 수행하였고, 현무암, 폴리비닐알코올, 폴리에틸렌섬유에 대하여 섬유 배향각에 따른 인장 강도를 측정하였다. 실험 결과 현무암섬유의 화학적 부착, 마찰 부착, 미끌림 경화 계수는 폴리비닐알코올섬유와 비교하여 각각 1.88, 1.03, 0.24배로 나타났다. 현무암섬유의 배향각에 따른 강도 감소 계수는 폴리비닐알코올섬유의 9배, 폴리에틸렌섬유의 3배로 나타났다.

Mechanical performance of fiber-reinforced recycled refractory brick concrete exposed to elevated temperatures

  • Nematzadeh, Mahdi;Baradaran-Nasiria, Ardalan
    • Computers and Concrete
    • /
    • 제24권1호
    • /
    • pp.19-35
    • /
    • 2019
  • In this paper, the effect of the type and amount of fibers on the physicomechanical properties of concrete containing fine recycled refractory brick (RRB) and natural aggregate subjected to elevated temperatures was investigated. For this purpose, forta-ferro (FF), polypropylene (PP), and polyvinyl alcohol (PVA) fibers with the volume fractions of 0, 0.25, and 0.5%, as well as steel fibers with the volume fractions of 0, 0.75, and 1.5% were used in the concrete containing RRB fine aggregate replacing natural sand by 0 and 100%. In total, 162 concrete specimens from 18 different mix designs were prepared and tested in the temperature groups of 23, 400, and $800^{\circ}C$. After experiencing heat, the concrete properties including the compressive strength, ultrasonic pulse velocity (UPV), weight loss, and surface appearance were evaluated and compared with the corresponding results of the reference (unheated) specimens. The results show that using RRB fine aggregate replacing natural fine aggregate by 100% led to an increase in the concrete compressive strength in almost all the mixes, and only in the PVA-containing mixes a decrease in strength was observed. Furthermore, UPV values at $800^{\circ}C$ for all the concrete mixes containing RRB fine aggregate were above those of the natural aggregate concrete specimens. Finally, regarding the compressive strength and UPV results, steel fibers demonstrated a better performance relative to other fiber types.

섬유 조합에 따른 초고성능 콘크리트의 인장거동 (Tensile Behavior of Ultra-High Performance Concrete According to Combination of Fibers)

  • 최정일;고경택;이방연
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제19권4호
    • /
    • pp.49-56
    • /
    • 2015
  • 초고성능 콘크리트는 높은 강도와 유동성을 갖는 우수한 재료 특성을 나타내는 콘크리트이다. 그러나 고연성 시멘트 복합체에 비하여 낮은 연성을 나타낸다. 이 연구에서는 강섬유와 마이크로섬유의 조합이 초고성능 콘크리트의 인장거동에 미치는 영향을 조사하였다. 이를 위하여 강섬유와 폴리에틸렌, 폴리비닐알코올, 현무암섬유 조합에 따라 4가지 초고성능 콘크리트 배합을 결정하였고, 인장거동을 평가하기 위하여 직접인장 실험을 수행하였다. 또한 마이크로섬유가 제조과정에서 의도하지 않은 과도한 기포를 생성하는지를 확인하기 위하여 밀도실험을 수행하였다. 실험결과 인장강도가 높은 폴리에틸렌섬유는 초고성능 콘크리트의 인장거동을 향상시키는데 효과적임을 확인하였고, 현무암섬유는 초고성능 콘크리트의 균열강도 및 인장강도를 증가시키는데 효과적임을 확인하였다. 또한 마이크로섬유가 의도하지 않은 기포를 생성하지 않는다는 것도 확인하였다.

Fiber orientation distribution of reinforced cemented Toyoura sand

  • Safdar, Muhammad;Newson, Tim;Waseem, Muhammad
    • Geomechanics and Engineering
    • /
    • 제30권1호
    • /
    • pp.67-73
    • /
    • 2022
  • In this study, the fiber orientation distribution (FOD) is investigated using both micro-CT (computerized tomography) and image analysis of physically cut specimens prepared from Polyvinyl Alcohol (PVA) fiber reinforced cemented Toyoura sand. The micro-CT images of the fiber reinforced cemented sand specimens were visualized in horizontal and vertical sections. Scans were obtained using a frame rate of two frames and an exposure time of 500 milliseconds. The number of images was set to optimize and typically resulted in approximately 3000 images. Then, the angles of the fibers for horizontal sections and in vertical section were calculated using the VGStudio MAX software. The number of fibers intersecting horizontal and vertical sections are counted using these images. A similar approach was used for physically cut specimens. The variation of results of fiber orientation between micro-CT scans and visual count were approximately 4-8%. The micro-CT scans were able to precisely investigate the fiber orientation distribution of fibers in these samples. The results show that 85-90% of the PVA fibers are oriented between ±30° of horizontal, and approximately 95% of fibers have an orientation that lies within ±45° of the horizontal plane. Finally, a comparison of experimental results with the generalized fiber orientation distribution function 𝜌(θ) is presented for isotropic and anisotropic distribution in fiber reinforced cemented Toyoura sand specimens. Experimentally, it can be seen that the average ratio of the number of fibers intersecting the finite area on a vertical plane to number of fibers intersecting the finite area on a horizontal plane (NVtot/NHtot) cut through a sample varies from 2.08 to 2.12 (an average ratio of 2.10 is obtained in this study). Based up on the analytical predictions, it can be seen that the average NVtot/NHtot ratio varies from 2.13 to 2.17 for varying n values (an average ratio of 2.15).