• Title/Summary/Keyword: Polytechnic College

Search Result 1,215, Processing Time 0.024 seconds

Design formulas for vibration control of taut cables using passive MR dampers

  • Duan, Yuanfeng;Ni, Yi-Qing;Zhang, Hongmei;Spencer, Billie.F. Jr.;Ko, Jan-Ming;Fang, Yi
    • Smart Structures and Systems
    • /
    • v.23 no.6
    • /
    • pp.521-536
    • /
    • 2019
  • Using magnetorheological (MR) dampers in multiswitch open-loop control mode has been shown to be cost-effective for cable vibration mitigation. In this paper, a method for analyzing the damping performance of taut cables incorporating MR dampers in open-loop control mode is developed considering the effects of damping coefficient, damper stiffness, damper mass, and stiffness of the damper support. Making use of a three-element model of MR dampers and complex modal analysis, both numerical and asymptotic solutions are obtained. An analytical expression is obtained from the asymptotic solution to evaluate the equivalent damping ratio of the cable-damper system in the open-loop control mode. The individual and combined effects of the damping coefficient, damper stiffness, damper mass and stiffness of damper support on vibration control effectiveness are investigated in detail. The main thrust of the present study is to derive a general formula explicitly relating the normalized system damping ratio and the normalized damper parameters in consideration of all concerned effects, which can be easily used for the design of MR dampers to achieve optimal open-loop vibration control of taut cables.

In situ analysis of capturing dynamics of magnetic nanoparticles in a microfluidic system

  • Munir, Ahsan;Zhu, Zanzan;Wang, Jianlong;Zhou, H. Susan
    • Smart Structures and Systems
    • /
    • v.12 no.1
    • /
    • pp.1-22
    • /
    • 2013
  • Magnetic nanoparticle based bioseparation in microfluidics is a multiphysics phenomenon that involves interplay of various parameters. The ability to understand the dynamics of these parameters is a prerequisite for designing and developing more efficient magnetic cell/bio-particle separation systems. Therefore, in this work proof-of-concept experiments are combined with advanced numerical simulation to design and optimize the capturing process of magnetic nanoparticles responsible for efficient microfluidic bioseparation. A low cost generic microfluidic platform was developed using a novel micromolding method that can be done without a clean room techniques and at much lower cost and time. Parametric analysis using both experiments and theoretical predictions were performed. It was found that flow rate and magnetic field strength greatly influence the transport of magnetic nanoparticles in the microchannel and control the capturing efficiency. The results from mathematical model agree very well with experiments. The model further demonstrated that a 12% increase in capturing efficiency can be achieved by introducing of iron-grooved bar in the microfluidic setup that resulted in increase in magnetic field gradient. The numerical simulations were helpful in testing and optimizing key design parameters. Overall, this work demonstrated that a simple low cost experimental proof-of-concept setup can be synchronized with advanced numerical simulation not only to enhance the functional performance of magneto-fluidic capturing systems but also to efficiently design and develop microfluidic bioseparation systems for biomedical applications.

Flutter analysis of long-span bridges using ANSYS

  • Hua, X.G.;Chen, Z.Q.;Ni, Y.Q.;Ko, J.M.
    • Wind and Structures
    • /
    • v.10 no.1
    • /
    • pp.61-82
    • /
    • 2007
  • This paper presents a novel finite element (FE) model for analyzing coupled flutter of long-span bridges using the commercial FE package ANSYS. This model utilizes a specific user-defined element Matrix27 in ANSYS to model the aeroelastic forces acting on the bridge, wherein the stiffness and damping matrices are expressed in terms of the reduced wind velocity and flutter derivatives. Making use of this FE model, damped complex eigenvalue analysis is carried out to determine the complex eigenvalues, of which the real part is the logarithm decay rate and the imaginary part is the damped vibration frequency. The condition for onset of flutter instability becomes that, at a certain wind velocity, the structural system incorporating fictitious Matrix27 elements has a complex eigenvalue with zero or near-zero real part, with the imaginary part of this eigenvalue being the flutter frequency. Case studies are provided to validate the developed procedure as well as to demonstrate the flutter analysis of cable-supported bridges using ANSYS. The proposed method enables the bridge designers and engineering practitioners to analyze flutter instability by using the commercial FE package ANSYS.

Generalization of the statistical moment-based damage detection method

  • Zhang, J.;Xu, Y.L.;Xia, Y.;Li, J.
    • Structural Engineering and Mechanics
    • /
    • v.38 no.6
    • /
    • pp.715-732
    • /
    • 2011
  • A novel structural damage detection method with a new damage index has been recently proposed by the authors based on the statistical moments of dynamic responses of shear building structures subject to white noise ground motion. The statistical moment-based damage detection (SMBDD) method is theoretically extended in this paper with general application. The generalized SMBDD method is more versatile and can identify damage locations and damage severities of many types of building structures under various external excitations. In particular, the incomplete measurements can be considered by the proposed method without mode shape expansion or model reduction. Various damage scenarios of two general forms of building structures with incomplete measurements are investigated in consideration of different excitations. The effects of measurement noise are also investigated. The damage locations and damage severities are correctly identified even when a high noise level of 15% and incomplete measurements are considered. The effectiveness and versatility of the generalized SMBDD method are demonstrated.

Output-only modal parameter identification for force-embedded acceleration data in the presence of harmonic and white noise excitations

  • Ku, C.J.;Tamura, Y.;Yoshida, A.;Miyake, K.;Chou, L.S.
    • Wind and Structures
    • /
    • v.16 no.2
    • /
    • pp.157-178
    • /
    • 2013
  • Output-only modal parameter identification is based on the assumption that external forces on a linear structure are white noise. However, harmonic excitations are also often present in real structural vibrations. In particular, it has been realized that the use of forced acceleration responses without knowledge of external forces can pose a problem in the modal parameter identification, because an external force is imparted to its impulse acceleration response function. This paper provides a three-stage identification procedure as a solution to the problem of harmonic and white noise excitations in the acceleration responses of a linear dynamic system. This procedure combines the uses of the mode indicator function, the complex mode indication function, the enhanced frequency response function, an iterative rational fraction polynomial method and mode shape inspection for the correlation-related functions of the force-embedded acceleration responses. The procedure is verified via numerical simulation of a five-floor shear building and a two-dimensional frame and also applied to ambient vibration data of a large-span roof structure. Results show that the modal parameters of these dynamic systems can be satisfactorily identified under the requirement of wide separation between vibration modes and harmonic excitations.

Axial compression performance of basalt-fiber-reinforced recycled-concrete-filled square steel tubular stub column

  • Zhang, Xianggang;Gao, Xiang;Wang, Xingguo;Meng, Ercong;Wang, Fang
    • Advances in concrete construction
    • /
    • v.10 no.6
    • /
    • pp.559-571
    • /
    • 2020
  • This study aimed to inspect the axial compression mechanical performance of basalt-fiber-reinforced recycled - concrete (BFRRC)-filled square steel tubular stub column. The replacement ratio of recycled coarse aggregate (RCA) and the basalt fiber (BF) dosage were used as variation parameters, and the axial compression performance tests of 15 BFRRC-filled square steel tubular stub column specimens were conducted. The failure mode and the load-displacement/strain curve of the specimen were measured. The working process of the BFRRC-filled square steel tubular stub column was divided into three stages, namely, elastic-elastoplasticity, sudden drawdown, and plasticity. The influence of the design parameters on the peak bearing capacity, energy dissipation performance, and other axial compression performance indexes was discussed. A mathematical model of segmental stiffness degradation was proposed on the basis of the degradation law of combined secant-stiffness under axial compression. The full-process curve equation of axial compressive stress-strain was proposed by introducing the influencing factors, including the RCA replacement ratio and the BF dosage, and the calculated curve agreed well with the test-measured curve.

The Study of Methods for Improve the Linearity of the Walking Assistant Robot to Move on Lateral Slopes (횡단경사면에서 지능형 보행보조로봇의 직진성 향상 방안 연구)

  • Lee, Won-Young;Eom, Su-Hong;Jang, Mun-Suck;Kwon, O-Sang;Lee, Eung-Hyuk
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.1
    • /
    • pp.261-268
    • /
    • 2013
  • In this paper, we propose the algorithm that improves the linearity of the walking assistant robot on lateral slopes. The walking assistant robot goes out of the course due to the rotational moment which is caused by the weight of the robot and the slope. To compensate this, we give the weight to each driving axle after comparing the real rotational angular velocity with the target rotational angular velocity which is entered by an user. The results of applying the algorithm to the real walking assistant robot show that the yaw axis deviation of the robot without the algorithm diverges, but the yaw axis deviation of the robot with the algorithm lies within 20cm, which can be recognized as stable. In addition, the changing rate of the course deviation is stabilized and shows no more course deviation, after moving 300cm.

Applications, Challenges, and Future Research Directions for Passive Exoskeletons in the Construction Industry: A Critical Review

  • Masood KHAN;Maxwell Fordjour ANTWI-AFARI;JoonOh SEO;Shahnawaz ANWER;Kelvin HEUNG
    • International conference on construction engineering and project management
    • /
    • 2024.07a
    • /
    • pp.1027-1034
    • /
    • 2024
  • Much labour is required in the labour-intensive construction sector for workers to do physically taxing jobs like plastering, paving, surfacing, material lifting, hauling, scaffolding, etc. Passive exoskeletons have been advocated and examined in previous studies to reduce physical demands, improve work efficiency, and prevent work-related musculoskeletal disorders in construction workers. This review study examined previous studies performed on passive exoskeletons in construction or other occupational domains with the aim of finding the working principles and design requirements of the passive exoskeletons, their applicability and usability in occupational settings, and the potential challenges in their adoption, thereby finding future research directions that can overcome those challenges. Three working principles were identified: muscle assistance, joint load reduction, and maintaining proper posture. The design requirements to achieve one or more of these working principles may have a few undesired effects on the usability of the passive exoskeletons, like discomfort, unnecessary weight of the passive exoskeleton, difficulty in operation, restricted range of motion of the joints supported, and the unaffordability of these exoskeletons by the workers. Passive exoskeletons were reported to have a range of positive effects, like reducing muscle effort and improving the endurance of the workers. The study concluded that there needs to be sufficient research on real construction workers in a real construction environment to convince the workers and managers to accept passive exoskeletons. To improve the usability of passive exoskeletons, fundamental changes in design are needed through further research so that the exoskeleton can support workers in multitasking rather than a single function. They also need to become more affordable, and the other undesired negative effects of passive exoskeletons should also be addressed.

A Study on the Effects of High Temperature Thermal Cycling on Bond Strength at the Interface between BCB and PECVD SiO2 Layers (고온 열순환 공정이 BCB와 PECVD 산화규소막 계면의 본딩 결합력에 미치는 영향에 대한 연구)

  • Kwon, Yongchai;Seok, Jongwon;Lu, Jian-Qiang;Cale, Timothy S.;Gutmann, Ronald J.
    • Korean Chemical Engineering Research
    • /
    • v.46 no.2
    • /
    • pp.389-396
    • /
    • 2008
  • The effect of thermal cycling on bond strength and residual stress at the interface between benzocyclobutene (BCB) and plasma enhanced chemical vapor deposited (PECVD) silicon dioxide ($SiO_2$) coated silicon wafers were evaluated by four point bending and wafer curvature techniques. Wafers were bonded using a pre-established baseline process. Thermal cycling was done between room temperature and a maximum peak temperature. In thermal cycling performed with 350 and $400^{\circ}C$ peak temperature, the bond strength increased substantially during the first thermal cycle. The increase in bond strength is attributed to the relaxation in residual stress by the condensation reaction of the PECVD $SiO_2$: this relaxation leads to increases in deformation energy due to residual stress and bond strength.