• Title/Summary/Keyword: Polynomial fuzzy systems

Search Result 117, Processing Time 0.029 seconds

Evolutionary Optimized Fuzzy Set-based Polynomial Neural Networks Based on Classified Information Granules

  • Oh, Sung-Kwun;Roh, Seok-Beom;Ahn, Tae-Chon
    • Proceedings of the KIEE Conference
    • /
    • 2005.07d
    • /
    • pp.2888-2890
    • /
    • 2005
  • In this paper, we introduce a new structure of fuzzy-neural networks Fuzzy Set-based Polynomial Neural Networks (FSPNN). The two underlying design mechanisms of such networks involve genetic optimization and information granulation. The resulting constructs are Fuzzy Polynomial Neural Networks (FPNN) with fuzzy set-based polynomial neurons (FSPNs) regarded as their generic processing elements. First, we introduce a comprehensive design methodology (viz. a genetic optimization using Genetic Algorithms) to determine the optimal structure of the FSPNNs. This methodology hinges on the extended Group Method of Data Handling (GMDH) and fuzzy set-based rules. It concerns FSPNN-related parameters such as the number of input variables, the order of the polynomial, the number of membership functions, and a collection of a specific subset of input variables realized through the mechanism of genetic optimization. Second, the fuzzy rules used in the networks exploit the notion of information granules defined over systems variables and formed through the process of information granulation. This granulation is realized with the aid of the hard C- Means clustering (HCM). The performance of the network is quantified through experimentation in which we use a number of modeling benchmarks already experimented with in the realm of fuzzy or neurofuzzy modeling.

  • PDF

Self-organizing Networks with Activation Nodes Based on Fuzzy Inference and Polynomial Function (펴지추론과 다항식에 기초한 활성노드를 가진 자기구성네트윅크)

  • 김동원;오성권
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.15-15
    • /
    • 2000
  • In the past couple of years, there has been increasing interest in the fusion of neural networks and fuzzy logic. Most of the existing fused models have been proposed to implement different types of fuzzy reasoning mechanisms and inevitably they suffer from the dimensionality problem when dealing with complex real-world problem. To overcome the problem, we propose the self-organizing networks with activation nodes based on fuzzy inference and polynomial function. The proposed model consists of two parts, one is fuzzy nodes which each node is operated as a small fuzzy system with fuzzy implication rules, and its fuzzy system operates with Gaussian or triangular MF in Premise part and constant or regression polynomials in consequence part. the other is polynomial nodes which several types of high-order polynomials such as linear, quadratic, and cubic form are used and are connected as various kinds of multi-variable inputs. To demonstrate the effectiveness of the proposed method, time series data for gas furnace process has been applied.

  • PDF

Design of Output Feedback Controller for Polynomial Fuzzy Large-Scale System : Sum-of-Square Approach (다항식 퍼지 대규모 시스템의 출력 궤환 제어기 설계 : 제곱합 접근 방법)

  • Kim, Han-Sol;Joo, Young-Hoon;Park, Jin-Bae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.5
    • /
    • pp.549-554
    • /
    • 2011
  • This paper presents the stabilization method for polynomial fuzzy large-scale system by using output feedback controller. Each sub system of the large-scale system is transformed into polynomial fuzzy model, and then output feedback controller is designed to stabilize the large-scale system. Stabilization condition is derived as sum-of-square (SOS) condition by applying the polynomial Lyapunov function. This condition can be easily solved by SOSTOOLS which is the third party of the MATLAB. From these solutions, output feedback controller gain can be obtained by SOS condition. Finally, a simulation example is presented to illustrate the effectiveness and the suitability of the proposed method.

A Novel Soft Computing Technique for the Shortcoming of the Polynomial Neural Network

  • Kim, Dongwon;Huh, Sung-Hoe;Seo, Sam-Jun;Park, Gwi-Tae
    • International Journal of Control, Automation, and Systems
    • /
    • v.2 no.2
    • /
    • pp.189-200
    • /
    • 2004
  • In this paper, we introduce a new soft computing technique that dwells on the ideas of combining fuzzy rules in a fuzzy system with polynomial neural networks (PNN). The PNN is a flexible neural architecture whose structure is developed through the modeling process. Unfortunately, the PNN has a fatal drawback in that it cannot be constructed for nonlinear systems with only a small amount of input variables. To overcome this limitation in the conventional PNN, we employed one of three principal soft computing components such as a fuzzy system. As such, a space of input variables is partitioned into several subspaces by the fuzzy system and these subspaces are utilized as new input variables to the PNN architecture. The proposed soft computing technique is achieved by merging the fuzzy system and the PNN into one unified framework. As a result, we can find a workable synergistic environment and the main characteristics of the two modeling techniques are harmonized. Thus, the proposed method alleviates the problems of PNN while providing superb performance. Identification results of the three-input nonlinear static function and nonlinear system with two inputs will be demonstrated to demonstrate the performance of the proposed approach.

A New Architecture of Genetically Optimized Self-Organizing Fuzzy Polynomial Neural Networks by Means of Information Granulation

  • Park, Ho-Sung;Oh, Sung-Kwun;Ahn, Tae-Chon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1505-1509
    • /
    • 2005
  • This paper introduces a new architecture of genetically optimized self-organizing fuzzy polynomial neural networks by means of information granulation. The conventional SOFPNNs developed so far are based on mechanisms of self-organization and evolutionary optimization. The augmented genetically optimized SOFPNN using Information Granulation (namely IG_gSOFPNN) results in a structurally and parametrically optimized model and comes with a higher level of flexibility in comparison to the one we encounter in the conventional FPNN. With the aid of the information granulation, we determine the initial location (apexes) of membership functions and initial values of polynomial function being used in the premised and consequence part of the fuzzy rules respectively. The GA-based design procedure being applied at each layer of genetically optimized self-organizing fuzzy polynomial neural networks leads to the selection of preferred nodes with specific local characteristics (such as the number of input variables, the order of the polynomial, a collection of the specific subset of input variables, and the number of membership function) available within the network. To evaluate the performance of the IG_gSOFPNN, the model is experimented with using gas furnace process data. A comparative analysis shows that the proposed IG_gSOFPNN is model with higher accuracy as well as more superb predictive capability than intelligent models presented previously.

  • PDF

Optimization of Fuzzy Inference Systems Based on Data Information Granulation (데이터 정보입자 기반 퍼지 추론 시스템의 최적화)

  • 오성권;박건준;이동윤
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.53 no.6
    • /
    • pp.415-424
    • /
    • 2004
  • In this paper, we introduce and investigate a new category of rule-based fuzzy inference system based on Information Granulation(IG). The proposed rule-based fuzzy modeling implements system structure and parameter identification in the efficient form of “If..., then...” statements, and exploits the theory of system optimization and fuzzy implication rules. The form of the fuzzy rules comes with three types of fuzzy inferences: a simplified one that involves conclusions that are fixed numeric values, a linear one where the conclusion part is viewed as a linear function of inputs, and a regression polynomial one as the extended type of the linear one. By the nature of the rule-based fuzzy systems, these fuzzy models are geared toward capturing relationships between information granules. The form of the information granules themselves becomes an important design features of the fuzzy model. Information granulation with the aid of HCM(Hard C-Means) clustering algorithm hell)s determine the initial parameters of rule-based fuzzy model such as the initial apexes of the membership functions and the initial values of polynomial function being used in the Premise and consequence Part of the fuzzy rules. And then the initial Parameters are tuned (adjusted) effectively with the aid of the improved complex method(ICM) and the standard least square method(LSM). In the sequel, the ICM and LSM lead to fine-tuning of the parameters of premise membership functions and consequent polynomial functions in the rules of fuzzy model. An aggregate objective function with a weighting factor is proposed in order to achieve a balance between performance of the fuzzy model. Numerical examples are included to evaluate the performance of the proposed model. They are also contrasted with the performance of the fuzzy models existing in the literature.

A Fuzzy Model Based on the PNN Structure

  • Sang, Rok-Soo;Oh, Sung-Kwun;Ahn, Tae-Chon;Hur, Kul
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.06a
    • /
    • pp.83-86
    • /
    • 1998
  • In this paper, a fuzzy model based on the Polynomial Neural Network(PNN) structure is proposed to estimate the emission pattern for air pollutant in power plants. the new algorithm uses PNN algorithm based on Group Mehtod of Data Handling (GMDH) algorithm and fuzzy reasoning in order to identify the premise structure and parameter of fuzzy implications rules, and the least square method in order to identify the optimal consequence parameters. Both time series data for the gas furnace and data for the NOx emission process of gas turbine power plants are used for the purpose of evaluating the performance of the fuzzy model. The simulation results show that the proposed technique can produce the optimal fuzzy model with higher accuracy and feasibility than other works achieved previously.

  • PDF

A Study on Fuzzy Set-based Polynomial Neural Networks Based on Evolutionary Data Granulation (Evolutionary Data Granulation 기반으로한 퍼지 집합 다항식 뉴럴 네트워크에 관한 연구)

  • 노석범;안태천;오성권
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2004.10a
    • /
    • pp.433-436
    • /
    • 2004
  • In this paper, we introduce a new Fuzzy Polynomial Neural Networks (FPNNS)-like structure whose neuron is based on the Fuzzy Set-based Fuzzy Inference System (FS-FIS) and is different from that of FPNNS based on the Fuzzy relation-based Fuzzy Inference System (FR-FIS) and discuss the ability of the new FPNNS-like structure named Fuzzy Set-based Polynomial Neural Networks (FSPNN). The premise parts of their fuzzy rules are not identical, while the consequent parts of the both Networks (such as FPNN and FSPNN) are identical. This difference results from the angle of a viewpoint of partition of input space of system. In other word, from a point of view of FS-FIS, the input variables are mutually independent under input space of system, while from a viewpoint of FR-FIS they are related each other. The proposed design procedure for networks architecture involves the selection of appropriate nodes with specific local characteristics such as the number of input variables, the order of the polynomial that is constant, linear, quadratic, or modified quadratic functions being viewed as the consequent part of fuzzy rules, and a collection of the specific subset of input variables. On the parameter optimization phase, we adopt Information Granulation (IC) based on HCM clustering algorithm and a standard least square method-based learning. Through the consecutive process of such structural and parametric optimization, an optimized and flexible fuzzy neural network is generated in a dynamic fashion. To evaluate the performance of the genetically optimized FSPNN (gFSPNN), the model is experimented with using the time series dataset of gas furnace process.

  • PDF

A Comparative Study on the Prediction of KOSPI 200 Using Intelligent Approaches

  • Bae, Hyeon;Kim, Sung-Shin;Kim, Hae-Gyun;Woo, Kwang-Bang
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.3 no.1
    • /
    • pp.7-12
    • /
    • 2003
  • In recent years, many attempts have been made to predict the behavior of bonds, currencies, stock or other economic markets. Most previous experiments used the neural network models for the stock market forecasting. The KOSPI 200 (Korea Composite Stock Price Index 200) is modeled by using different neural networks and fuzzy logic. In this paper, the neural network, the dynamic polynomial neural network (DPNN) and the fuzzy logic employed for the prediction of the KOSPI 200. The prediction results are compared by the root mean squared error (RMSE) and scatter plot, respectively. The results show that the performance of the fuzzy system is little bit worse than that of the DPNN but better than that of the neural network. We can develop the desired fuzzy system by optimization methods.

Design of Fuzzy Polynomial neural Networks Using Symbolic Encoding of Genetic Algorithms and Its Application to Software System (유전자 알고리즘의 기호 코딩을 이용한 퍼지 다항식 뉴럴네트워크의 설계와 소프트웨어 공정으로의 응용)

  • Lee In-Tae;O Seong-Gwon;Choi Jeong-Nae
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2006.05a
    • /
    • pp.113-116
    • /
    • 2006
  • 본 논문은 소프트웨어 공정에 대하여 기호코팅을 이용한 유전자 알고리즘 기반 퍼지 다항식 뉴럴 네트워크 (Genetic Algorithms-based Fuzzy Polynomial Neural Networks ; gFPNN)의 모델을 제안한다. 유전자 알고리즘에는 이진코딩, 기호코팅, 실수코딩이 있다. 제안된 모델은 스트링의 길이에 따른 해밍절벽을 기호코딩으로 극복하였다. gFPNN에 전반부 멤버쉽 함수는 삼각형과 가우시안형의 멤버쉽 함수가 사용된다. 그리고 규칙의 후반부는 간략, 선형, 이차식 그리고 변형된 이차식 함수에 의해 설계된다. 실험적 예제를 통하여 제안된 모델의 성능이 근사화 능력과 일반화 능력이 우수함을 보인다.

  • PDF