• Title/Summary/Keyword: Polynomial Multiplication

Search Result 89, Processing Time 0.024 seconds

A Study on the Inverse Element Generation Algorithm over $GF(3^m)$ (유한체 $GF(3^m)$상에서 역원생성 알고리즘에 관한 연구)

  • Park, Chun-Myoung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.10a
    • /
    • pp.768-771
    • /
    • 2008
  • This paper presents an algorithm for generating inverse element over finite fields $GF(3^m)$, and constructing method of inverse element generator based on inverse element generating algorithm. The method need to compute inverse of an element eve. $GF(3^m)$ which corresponds to a polynomial eve. $GF(3^m)$ with order less than equal to m-1. Here, the computation is based on multiplication, square and cube method derived from the mathematics properties over finite fields.

  • PDF

Quadratic polynomial fitting algorithm for peak point detection of white light scanning interferograms (백색광주사간섭무늬의 정점검출을 위한 이차다항식맞춤 알고리즘)

  • 박민철;김승우
    • Korean Journal of Optics and Photonics
    • /
    • v.9 no.4
    • /
    • pp.245-250
    • /
    • 1998
  • A new computational algorithm is presented for the peak point detection of white light interferograms. Assuming the visibility function of white light interferograms as a quadratic polynomial, the peak point is searched so as to minimize the error sum between the measured intensity data and the analytical intensity. As compared with other existing algorithms, this new algorithm requires less computation since the peak point is simply determined with a single step matrix multiplication. In addition, a good robustness is obtained against external random disturbances on measured intensities since the algorithm is based upon least squares principles.

  • PDF

A generating method of CM parameters of pairing-friendly abelian surfaces using Brezing-Weng family (Brezing-Weng 다항식족을 이용한 페어링 친화 아벨 곡면의 CM 파라미터 생성법)

  • Yoon, Kisoon;Park, Young-Ho;Chang, Nam Su
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.25 no.3
    • /
    • pp.567-571
    • /
    • 2015
  • Brezing and Weng proposed a method to generate CM parameters of pairing-friendly elliptic curves using polynomial representations of a number field, and Freeman generalized the method for the case of abelian varieties. In this paper we derive explicit formulae to find a family of polynomials used in Brezing-Weng method especially in the case of abelian surfaces, and present some examples generated by the proposed method.

3X Serial GF(2$^m$) Multiplier on Polynomial Basis

  • Moon, San-Gook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.1
    • /
    • pp.928-930
    • /
    • 2005
  • With an increasing importance of the information security issues, the efficienct calculation process in terms of finite field level is becoming more important in the Elliptic curve cryptosystems. Serial multiplication architectures are based on the Mastrovito's serial multiplier structure. In this paper, we manipulate the numerical expressions so that we could suggest a 3-times as fast as (3x) the Mastrovito's multiplier using the polynomial basis. The architecture was implemented with HDL, to be evaluated and verified with EDA tools. The implemented 3x GF (Galois Field) multiplier showed 3 times calculation speed as fast as the Mastrovito's, only with the additional partial-sum generation processing unit.

  • PDF

CLEANNESS OF SKEW GENERALIZED POWER SERIES RINGS

  • Paykan, Kamal
    • Bulletin of the Korean Mathematical Society
    • /
    • v.57 no.6
    • /
    • pp.1511-1528
    • /
    • 2020
  • A skew generalized power series ring R[[S, 𝜔]] consists of all functions from a strictly ordered monoid S to a ring R whose support contains neither infinite descending chains nor infinite antichains, with pointwise addition, and with multiplication given by convolution twisted by an action 𝜔 of the monoid S on the ring R. Special cases of the skew generalized power series ring construction are skew polynomial rings, skew Laurent polynomial rings, skew power series rings, skew Laurent series rings, skew monoid rings, skew group rings, skew Mal'cev-Neumann series rings, the "untwisted" versions of all of these, and generalized power series rings. In this paper we obtain some necessary conditions on R, S and 𝜔 such that the skew generalized power series ring R[[S, 𝜔]] is (uniquely) clean. As particular cases of our general results we obtain new theorems on skew Mal'cev-Neumann series rings, skew Laurent series rings, and generalized power series rings.

A New Low-complexity Bit-parallel Normal Basis Multiplier for$GF(2^m) $ Fields Defined by All-one Polynomials (All-One Polynomial에 의해 정의된 유한체 $GF(2^m) $ 상의 새로운 Low-Complexity Bit-Parallel 정규기저 곱셈기)

  • 장용희;권용진
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.31 no.1_2
    • /
    • pp.51-58
    • /
    • 2004
  • Most of pubic-key cryptosystems are built on the basis of arithmetic operations defined over the finite field GF$GF(2^m)$ .The other operations of finite fields except addition can be computed by repeated multiplications. Therefore, it is very important to implement the multiplication operation efficiently in public-key cryptosystems. We propose an efficient bit-parallel normal basis multiplier for$GF(2^m)$ fields defined by All-One Polynomials. The gate count and time complexities of our proposed multiplier are lower than or equal to those of the previously proposed multipliers of the same class. Also, since the architecture of our multiplier is regular, it is suitable for VLSI implementation.

Design of High-Speed Parallel Multiplier with All Coefficients 1's of Primitive Polynomial over Finite Fields GF(2m) (유한체 GF(2m)상의 기약다항식의 모든 계수가 1을 갖는 고속 병렬 승산기의 설계)

  • Seong, Hyeon-Kyeong
    • Journal of the Korea Society of Computer and Information
    • /
    • v.18 no.2
    • /
    • pp.9-17
    • /
    • 2013
  • In this paper, we propose a new multiplication algorithm for two polynomials using primitive polynomial with all 1 of coefficient on finite fields GF($2^m$), and design the multiplier with high-speed parallel input-output module structure using the presented multiplication algorithm. The proposed multiplier is designed $m^2$ same basic cells that have a 2-input XOR gate and a 2-input AND gate. Since the basic cell have no a latch circuit, the multiplicative circuit is very simple and is short the delay time $D_A+D_X$ per cell unit. The proposed multiplier is easy to extend the circuit with large m having regularity and modularity by cell array, and is suitable to the implementation of VLSI circuit.

Efficient bit-parallel multiplier for GF(2$^m$) defined by irreducible all-one polynomials (기약인 all-one 다항식에 의해 정의된 GF(2$^m$)에서의 효율적인 비트-병렬 곱셈기)

  • Chang Ku-Young;Park Sun-Mi;Hong Do-Won
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.43 no.7 s.349
    • /
    • pp.115-121
    • /
    • 2006
  • The efficiency of the multiplier largely depends on the representation of finite filed elements such as normal basis, polynomial basis, dual basis, and redundant representation, and so on. In particular, the redundant representation is attractive since it can simply implement squaring and modular reduction. In this paper, we propose an efficient bit-parallel multiplier for GF(2m) defined by an irreducible all-one polynomial using a redundant representation. We modify the well-known multiplication method which was proposed by Karatsuba to improve the efficiency of the proposed bit-parallel multiplier. As a result, the proposed multiplier has a lower space complexity compared to the previously known multipliers using all-one polynomials. On the other hand, its time complexity is similar to the previously proposed ones.

Design of Montgomery Algorithm and Hardware Architecture over Finite Fields (유한 체상의 몽고메리 알고리즘 및 하드웨어 구조 설계)

  • Kim, Kee-Won;Jeon, Jun-Cheol
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.18 no.2
    • /
    • pp.41-46
    • /
    • 2013
  • Finite field multipliers are the basic building blocks in many applications such as error-control coding, cryptography and digital signal processing. Recently, many semi-systolic architectures have been proposed for multiplications over finite fields. Also, Montgomery multiplication algorithm is well known as an efficient arithmetic algorithm. In this paper, we induce an efficient multiplication algorithm and propose an efficient semi-systolic Montgomery multiplier based on polynomial basis. We select an ideal Montgomery factor which is suitable for parallel computation, so our architecture is divided into two parts which can be computed simultaneously. In analysis, our architecture reduces 30%~50% of time complexity compared to typical architectures.

A Construction of Cellular Array Multiplier Over GF($2^m$) (GF($2^m$)상의 셀배열 승산기의 구성)

  • Seong, Hyeon-Kyeong;Kim, Heung-Soo
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.26 no.4
    • /
    • pp.81-87
    • /
    • 1989
  • A cellular array multiplier for performing the multiplication of two elements in the finite field GF($2^m$) is presented in this paper. This multiplier is consisted of three operation part ; the multiplicative operation part, the modular operation part, and the primitive irreducible polynomial operation part. The multiplicative operation part and the modular operation part are composed by the basic cellular arrays designed AND gate and XOR gate. The primitive iirreducible operation part is constructed by XOR gates, D flip-flop circuits and a inverter. The multiplier presented here, is simple and regular for the wire routing and possesses the properties of concurrency and modularity. Also, it is expansible for the multiplication of two elements in the finite field increasing the degree m and suitable for VLSI implementation.

  • PDF