• Title/Summary/Keyword: Polynomial Method

Search Result 1,306, Processing Time 0.029 seconds

Design of FIR/IIR Lattice Filters using the Circulant Matrix Factorization (Circulant Matrix Factorization을 이용한 FIR/IIR Lattice 필터의 설계)

  • Kim Sang-Tae;Lim Yong-Kon
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.41 no.1
    • /
    • pp.35-44
    • /
    • 2004
  • We Propose the methods to design the finite impulse response (FIR) and the infinite impulse response (IIR) lattice filters using Schur algorithm through the spectral factorization of the covariance matrix by circulant matrix factorization (CMF). Circulant matrix factorization is also very powerful tool used for spectral factorization of the covariance polynomial in matrix domain to obtain the minimum phase polynomial without the polynomial root finding problem. Schur algorithm is the method for a fast Cholesky factorization of Toeplitz matrix, which easily determines the lattice filter parameters. Examples for the case of the FIR filter and for the case of the In filter are included, and performance of our method check by comparing of our method and another methods (polynomial root finding and cepstral deconvolution).

Self-Organizing Fuzzy Polynomial Neural Networks by Means of IG-based Consecutive Optimization : Design and Analysis (정보 입자기반 연속전인 최적화를 통한 자기구성 퍼지 다항식 뉴럴네트워크 : 설계와 해석)

  • Park, Ho-Sung;Oh, Sung-Kwun
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.55 no.6
    • /
    • pp.264-273
    • /
    • 2006
  • In this paper, we propose a new architecture of Self-Organizing Fuzzy Polynomial Neural Networks (SOFPNN) by means of consecutive optimization and also discuss its comprehensive design methodology involving mechanisms of genetic optimization. The network is based on a structurally as well as parametrically optimized fuzzy polynomial neurons (FPNs) conducted with the aid of information granulation and genetic algorithms. In structurally identification of FPN, the design procedure applied in the construction of each layer of a SOFPNN deals with its structural optimization involving the selection of preferred nodes (or FPNs) with specific local characteristics and addresses specific aspects of parametric optimization. In addition, the fuzzy rules used in the networks exploit the notion of information granules defined over system's variables and formed through the process of information granulation. That is, we determine the initial location (apexes) of membership functions and initial values of polynomial function being used in the premised and consequence part of the fuzzy rules respectively. This granulation is realized with the aid of the hard c-menas clustering method (HCM). For the parametric identification, we obtained the effective model that the axes of MFs are identified by GA to reflect characteristic of given data. Especially, the genetically dynamic search method is introduced in the identification of parameter. It helps lead to rapidly optimal convergence over a limited region or a boundary condition. To evaluate the performance of the proposed model, the model is experimented with using two time series data(gas furnace process, nonlinear system data, and NOx process data).

Genetic Algorithms based Optimal Polynomial Neural Network Model (유전자 알고리즘 기반 최적 다항식 뉴럴네트워크 모델)

  • Kim, Wan-Su;Kim, Hyun-Ki;Oh, Sung-Kwun
    • Proceedings of the KIEE Conference
    • /
    • 2005.07d
    • /
    • pp.2876-2878
    • /
    • 2005
  • In this paper, we propose Genetic Algorithms(GAs)-based Optimal Polynomial Neural Networks(PNN). The proposed algorithm is based on Group Method of Data Handling(GMDH) method and its structure is similar to feedforward Neural Networks. But the structure of PNN is not fixed like in conventional Neural Networks and can be generated. The each node of PNN structure uses several types of high-order polynomial such as linear, quadratic and modified quadratic, and is connected as various kinds of multi-variable inputs. The conventional PNN depends on experience of a designer that select No. of input variable, input variable and polynomial type. Therefore it is very difficult a organizing of optimized network. The proposed algorithm identified and selected No. of input variable, input variable and polynomial type by using Genetic Algorithms(GAs). In the sequel the proposed model shows not only superior results to the existing models, but also pliability in organizing of optimal network. The study is illustrated with the ACI Distance Relay Data for application to power systems.

  • PDF

Design of Output Feedback Controller for Polynomial Fuzzy Large-Scale System : Sum-of-Square Approach (다항식 퍼지 대규모 시스템의 출력 궤환 제어기 설계 : 제곱합 접근 방법)

  • Kim, Han-Sol;Joo, Young-Hoon;Park, Jin-Bae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.5
    • /
    • pp.549-554
    • /
    • 2011
  • This paper presents the stabilization method for polynomial fuzzy large-scale system by using output feedback controller. Each sub system of the large-scale system is transformed into polynomial fuzzy model, and then output feedback controller is designed to stabilize the large-scale system. Stabilization condition is derived as sum-of-square (SOS) condition by applying the polynomial Lyapunov function. This condition can be easily solved by SOSTOOLS which is the third party of the MATLAB. From these solutions, output feedback controller gain can be obtained by SOS condition. Finally, a simulation example is presented to illustrate the effectiveness and the suitability of the proposed method.

Effect of Improving Accuracy for Effective Atomic number (EAN) and Relative Electron Density (RED) extracted with Polynomial-based Calibration in Dual-energy CT

  • Daehong Kim;Il-Hoon Cho;Mi-jo Lee
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.7
    • /
    • pp.1017-1023
    • /
    • 2023
  • The purpose of this study was to improve the accuracy of effective atomic number (EAN) and relative electron density (RED) using a polynomial-based calibration method using dual-energy CT images. A phantom composed of 11 tissue-equivalent materials was acquired with dual-energy CT to obtain low- and high-energy images. Using the acquired dual-energy images, the ratio of attenuation of low- and high-energy images for EAN was calibrated based on Stoichiometric, Quadratic, Cubic, Quartic polynomials. EAN and RED were extracted using each calibration method. As a result of the experiment, the average error of EAN using Cubic polynomial-based calibration was minimum. Even in the RED image extracted using EAN, the error of the Cubic polynomial-based RED was minimum. Cubic polynomial-based calibration contributes to improving the accuracy of EAN and RED, and would like to contribute to accurate diagnosis of lesions in CT examinations or quantification of various materials in the human body.

A Parameter Estimation Method of Multiple Time Interval for Low Frequency Oscillation Analysis (저주파진동 해석을 위한 다구간 파라미터 추정 방법)

  • Shim, Kwan-Shik;Kim, Sang-Tae;Choi, Joon-Ho;Nam, Hae-Kon;Ahn, Seon-Ju
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.7
    • /
    • pp.875-882
    • /
    • 2014
  • In this paper, we propose a new parameter estimation method that can deal with the data of multiple time intervals simultaneously. If there are common modes in the multiple time intervals, it is possible to create a new polynomial by summing the coefficients of the prediction error polynomials of each time interval. By calculating the roots of the new polynomial, it is possible to estimate the common modes that exist in each time interval. The accuracy of the proposed parameter estimation method has been proven by using appropriate test signals.

SOLVING MATRIX POLYNOMIALS BY NEWTON'S METHOD WITH EXACT LINE SEARCHES

  • Seo, Jong-Hyeon;Kim, Hyun-Min
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.12 no.2
    • /
    • pp.55-68
    • /
    • 2008
  • One of well known and much studied nonlinear matrix equations is the matrix polynomial which has the form $P(X)=A_0X^m+A_1X^{m-1}+{\cdots}+A_m$, where $A_0$, $A_1$, ${\cdots}$, $A_m$ and X are $n{\times}n$ complex matrices. Newton's method was introduced a useful tool for solving the equation P(X)=0. Here, we suggest an improved approach to solve each Newton step and consider how to incorporate line searches into Newton's method for solving the matrix polynomial. Finally, we give some numerical experiment to show that line searches reduce the number of iterations for convergence.

  • PDF

A Study on the Strong Polynomial Time Algorithm for the Linear Programming (선형계획문제의 강성다항식 계산단계 기법에 관한 연구)

  • Chung, S.J.;Kang, W.M.;Chung, E.S.;Hu, H.S.
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.19 no.4
    • /
    • pp.3-11
    • /
    • 1993
  • We propose a new dual simplex method using a primal interior point. The dropping variable is chosen by utilizing the primal feasible interior point. For a given dual feasible basis, its corresponding primal infeasible basic vector and the interior point are used for obtaining a decreasing primal feasible point The computation time of moving on interior point in our method takes much less than that od Karmarker-type interior methods. Since any polynomial time interior methods can be applied to our method we conjectured that a slight modification of our method can give a polynomial time complexity.

  • PDF

FRACTIONAL POLYNOMIAL METHOD FOR SOLVING FRACTIONAL ORDER POPULATION GROWTH MODEL

  • Krishnarajulu, Krishnaveni;Krithivasan, Kannan;Sevugan, Raja Balachandar
    • Communications of the Korean Mathematical Society
    • /
    • v.31 no.4
    • /
    • pp.869-878
    • /
    • 2016
  • This paper presents an ecient fractional shifted Legendre polynomial method to solve the fractional Volterra's model for population growth model. The fractional derivatives are described based on the Caputo sense by using Riemann-Liouville fractional integral operator. The theoretical analysis, such as convergence analysis and error bound for the proposed technique has been demonstrated. In applications, the reliability of the technique is demonstrated by the error function based on the accuracy of the approximate solution. The numerical applications have provided the eciency of the method with dierent coecients of the population growth model. Finally, the obtained results reveal that the proposed technique is very convenient and quite accurate to such considered problems.

Robust H Disturbance Attenuation Control of Continuous-time Polynomial Fuzzy Systems (연속시간 다항식 퍼지 시스템을 위한 강인한 H 외란 감쇠 제어)

  • Jang, Yong Hoon;Kim, Han Sol;Joo, Young Hoon;Park, Jin Bae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.6
    • /
    • pp.429-434
    • /
    • 2016
  • This paper introduces a stabilization condition for polynomial fuzzy systems that guarantees $H_{\infty}$ performance under the imperfect premise matching. An $H_{\infty}$ control of polynomial fuzzy systems attenuates the effect of external disturbance. Under the imperfect premise matching, a polynomial fuzzy model and controller do not share the same membership functions. Therefore, a polynomial fuzzy controller has an enhanced design flexibility and inherent robustness to handle parameter uncertainties. In this paper, the stabilization conditions are derived from the polynomial Lyapunov function and numerically solved by the sum-of-squares (SOS) method. A simulation example and comparison of the performance are provided to verify the stability analysis results and demonstrate the effectiveness of the proposed stabilization conditions.