• Title/Summary/Keyword: Polymorphism chromosome

Search Result 166, Processing Time 0.021 seconds

UNDERSTANDING OF EPIGENETICS AND DNA METHYLATION (인간 게놈의 Copy Number Variation과 유전자 질환)

  • Oh, Jung-Hwan;Nishimura, Ichiro
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.30 no.2
    • /
    • pp.205-212
    • /
    • 2008
  • Genetic variation in the human genome occurs on various levels; from the single nucleotide polymorphism to large, microscopically visible chromosome anomalies. It can be present in many forms, including variable number of tandem repeat (VNTRs; e.g., mini- and microsatellites), presence/absence of transposable elements (e.g., Alu elements), single nucleotide polymorphisms, and structural alterations (e.g., copy number variation, segmental duplication, inversion, translocation). Until recently SNPs were thought to be the main source of genetic and phenotypic human variation. However, the use of methods such as array comparative genomic hybridization (array CGH) and fluorescence in situ hybridization (FISH) have revealed the presence of copy number variations(CNVs) ranging from kilobases (kb) to megabases (Mb) in the human genome. There is great interest in the possibility that CNVs playa role in the etiology of common disease such as HIV-1/AIDS, diabetes, autoimmune disease, heart disease and cancer. The discovery of widespread copy number variation in human provides insights into genetic variability among populations and provides a foundation for studies of the contribution of CNVs to evolution and disease.

Angiotensin Converting Enzyme Gene Polymorphism in Alport Syndrome (알포트증후군 환자에서 안지오텐신전환효소 유전자 다형성의 의의)

  • Kim Ji-Hong;Lee Jae-Seung;Kim Pyung-Kil
    • Childhood Kidney Diseases
    • /
    • v.8 no.1
    • /
    • pp.18-25
    • /
    • 2004
  • Purpose : Alport syndrome is clinically characterized by hereditary progressive nephritis causing ESRD with irregular thickening of the GBM and sensory neural hearing loss. The mutations of type IV collagen gene(COL4A5) located on the long arm of X chromosome is considered responsible for most of the structural abnormalities in the GBM of Alport patients. Since no definite clinical prognostic predictor has been reported in the disease yet, we designed this study to evaluate the significance of genetic polymorphism of the angiotensin converting enzyme in children with Alport syndrome as a prognostic factor for disease progression. Methods : ACE I/D genotype were examined by PCR amplification of the genomic DNA in 12 patients with Alport syndrome and 12 of their family members. Alport patients were divided into two groups; the conservative group, those who had preserved renal function for more than 10 years of age, the early CRF group, those who had progressed to CRF within 10 years of age. Results : The mean age of onset was $3.45{\pm}2.4$ years in the conservative group, $4.4{\pm}1.2$ years in the early CRF group. Sex ratios were 5:3 and 2:1 in each group. Among 12 cases of patients, 4 cases were in early CRF group and their mean duration of onset to CRF was 4.5 yews(8.9 years of age). Eight patients(67%) were in the conservative group and they had normal renal function for more than 10 years of age(mean duration of renal preservation was 10.6 years). The incidence of II type ACE gene were in 25.0%(3 cases), ID type in 41.7%(5 cases), DD type in 33.3%(4 cases). There was no significant difference between Alport patient and normal control(II type 44.3%, ID type 40.9%, DD type 14.8%). The incidence of DD type of early CRF group were higher than that of the conservative group(75% vs 12.5%)(p<0.05). There was no difference in ACE gene polymorphism between normal Alport family members and control group. Conclusion : Even though there was no significant difference of ACE polymorphism between Alport patients and the normal control group, the incidence of DD type is significantly increased in early CRF group which means DD type of ACE polymorphism has a possibility of being a predictor for early progression to CRF in Alport patients.

  • PDF

Identification of New Microsatellite DNAs in the Chromosomal DNA of the Korean Cattle (Hanwoo)

  • Kim, J.W.;Hong, J.M.;Lee, Y.S.;Chae, S.H.;Choi, C.B.;Choi, I.H.;Yeo, J.S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.17 no.10
    • /
    • pp.1329-1333
    • /
    • 2004
  • To isolate the microsatellites from the chromosomal DNA of the Korean cattle (Hanwoo) and to use those for the genetic selection, four bacteriophage genomic libraries containing the chromosomal DNA of six Hanwoo steers showing the differences in meat quality and quantity were used. Screening of the genomic libraries using $^{32}P-radiolabeled 5'-({CA})_{12}-3$nucleotide as a probe, resulted in isolation of about 3,000 positive candidate bacteriophage clones that contain $(CA)_n$-type dinucleotide microsatellites. After confirming the presence of microsatellite in each positive candidate clone by Southern blot analysis, the DNA fragments that include microsatellite and flanking sequences possessing less than 2 kb in size, were subcloned into plasmid vector. Results from the analysis of microsatellite length polymorphism, using twenty-two PCR primers designed from flanking region of each microsatellite DNA, demonstrated that 208 and 210 alleles of HW-YU-MS#3 were closely related to the economic traits such as marbling score, daily gain, backfat thickness and M. longissimus dorsi area in Hanwoo. Interestingly, HW-YU-MS#3 microsatellite was localized in bovine chromosome 17 on which QTLs related to regulation of the body fat content and muscle ypertrophy locus are previously known to exist. Taken together, the results from the present study suggest the possible use of the two alleles as a DNA marker related to economic trait to select the Hanwoo in the future.

Prostate Stem Cell Antigen Single Nucleotide Polymorphisms Influence Risk of Estrogen Receptor Negative Breast Cancer in Korean Females

  • Kim, Sook-Young;Yoo, Jae-Young;Shin, Ae-Sun;Kim, Yeon-Ju;Lee, Eun-Sook;Lee, Yeon-Su
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.1
    • /
    • pp.41-48
    • /
    • 2012
  • Introduction: Breast cancer is the second leading cancer in Korean women. To assess potential genetic associations between the prostate stem cell antigen (PSCA) gene in the chromosome 8q24 locus and breast cancer risk in Korean women, 13 SNPs were selected and associations with breast cancer risk were analyzed with reference to hormone receptor (HR) and menopausal status. Methods:We analyzed DNA extracted from buffy coat from 456 patients and 461 control samples, using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) based upon region-specific PCR followed by allelespecific single base primer extension reactions. Risks associated with PSCA genotypes and haplotypes were estimated with chi-square test (${\chi}^2$-test), and polytomous logistic regression models using odds ratios (OR) and 95% confidence intervals (CIs), by HR and menopausal status. Results: In case-control analysis, odds ratios (OR) of rs2294009, rs2294008, rs2978981, rs2920298, rs2976395, and rs2976396 were statistically significant only among women with estrogen receptor (ER) negative cancers, and those of rs2294008, rs2978981, rs2294010, rs2920298, rs2976394, rs10216533, and rs2976396 were statistically significant only in pre-menopausal women, and not in postmenopausal women. Risk with the TTGGCAA haplotype was significantly elevated in ER (-) status (OR= 1.48, 95% CI= 1.03~2.12, p<0.05). Especially risk of allele T of rs2294008 is significantly low in pre-menopausal breast cancer patients and AA genotype of rs2976395 in ER (-) status represents the increase of OR value. Conclusion: This report indicated for the first time that associations exist between PSCA SNPs and breast cancer susceptibility in Korean women, particularly those who are pre-menopausal with an estrogen receptor negative tumor status.

Association of a missense mutation in the positional candidate gene glutamate receptor-interacting protein 1 with backfat thickness traits in pigs

  • Lee, Jae-Bong;Park, Hee-Bok;Yoo, Chae-Kyoung;Kim, Hee-Sung;Cho, In-Cheol;Lim, Hyun-Tae
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.30 no.8
    • /
    • pp.1081-1085
    • /
    • 2017
  • Objective: Previously, we reported quantitative trait loci (QTLs) affecting backfat thickness (BFT) traits on pig chromosome 5 (SW1482-SW963) in an F2 intercross population between Landrace and Korean native pigs. The aim of this study was to evaluate glutamate receptor-interacting protein 1 (GRIP1) as a positional candidate gene underlying the QTL affecting BFT traits. Methods: Genotype and phenotype analyses were performed using the 1,105 $F_2$ progeny. A mixed-effect linear model was used to access association between these single nucleotide polymorphism (SNP) markers and the BFT traits in the $F_2$ intercross population. Results: Highly significant associations of two informative SNPs (c.2442 T>C, c.3316 C>G [R1106G]) in GRIP1 with BFT traits were detected. In addition, the two SNPs were used to construct haplotypes that were also highly associated with the BFT traits. Conclusion: The SNPs and haplotypes of the GRIP1 gene determined in this study can contribute to understand the genetic structure of BFT traits in pigs.

Genome Mapping Technology And Its Application In Plant Breeding (작물 육종에서 분자유전자 지도의 이용)

  • 은무영
    • Proceedings of the Botanical Society of Korea Conference
    • /
    • 1995.07a
    • /
    • pp.57-86
    • /
    • 1995
  • Molecular mapping of plant genomes has progressed rapidly since Bostein et al.(1980) introduced the idea of constructing linkage maps of human genome based on restriction fragment length polymorphism (RFLP) markers. In recent years, the development of protein and DNA markers has stimulated interest for the new approaches to plant improvement. While classical maps based on morphological mutant markers have provided important insights into the plant genetics and cytology, the molecular maps based on molecular markers have a number of inherent advatages over classical genetic maps for the applications in genetic studies and/or breeding schemes. Isozymes and DNA markers are numerous, discrete, non-deleterious, codominant, and almost entirely free of environmental and epistatic interactions. For these reasons, they are widely used in constructing detailed linkage maps in a number of plant species. Plant breeders improve crops by selecting plants with desirable phenotypes. However a plant's phenotyes is often under genetic control, positioning at different "quantitative trait loci" (QTLs) together with environmental effects. Molecular maps provide a possible way to determine the effect of the individual gene that combines to produce a quantitative trait because the segregation of a large number of markers can be followed in a single genetic cross. Using market-assisted selection, plants that contain several favorable genes for the trait and do not contain unfavourable segments can be obtained during early breeding processes. Providing molecular maps are available, valuable data relevant to the taxonomic relationships and chromosome evolution can be accumulated by comparative mapping and also the structural relationships between linkage map and physical map can be identified by cDNA sequencing. After constructing high density maps, it will be possible to clone genes, whose products are unknown, such as semidwarf and disease resistance genes. However, much attention has to be paid to level-up the basic knowledge of genetics, physiology, biochemistry, plant pathology, entomology, microbiology, and so on. It must also be kept in mind that scientists in various fields will have to make another take off by intensive cooperation together for early integration and utilization of these newly emerging high-techs in practical breeding. breeding.

  • PDF

Identification of Candidate SNP (Single Nucleotide Polymorphism) for Growth and Carcass Traits Related to QTL on Chromosome 6 in Hanwoo (Korean Cattle)

  • Lee, Y.S.;Lee, J.H.;Lee, J.Y.;Kim, J.J.;Park, H.S.;Yeo, J.S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.21 no.12
    • /
    • pp.1703-1709
    • /
    • 2008
  • As genetic markers, single nucleotide polymorphisms (SNP) are very appropriate for the development of genetic tests for economic traits in livestock. Several microsatellite markers have been identified as useful markers for the genetic improvement of Hanwoo. Among those markers, ILSTS035 was recently mapped at a similar position with four SNPs (AH1_11, AH1_9, 31465_446, and 12273_165) in a linkage map of EST-based SNP in BAT6. Among the four SNPs, two SNPs (31465_446 and 12273_165) were analyzed using BLAST at the NCBI web site. The sequences including the 12273_165 SNP were identified at the intron region within the LOC534614 gene on the gene sequence map (Bos taurus NCBI Map view, build 3.1). The LOC534614 gene represents a protein similar to myosin heavy chain, fat skeletal muscle, embryonic isoform 1 in the dog, and myosin_1 (Myosin heavy chain D) in Macaca mulatta. In cattle, the myosin heavy chain was associated with muscle development. The phenotypic data for growth and carcass traits in the 415 animals were analyzed by the mixed ANCOVA (analysis of covariance) linear model using PROC GLM module in SAS v9.1. By the genotyping of Hanwoo individuals (n = 415) to evaluate the association of SNP with growth and carcass traits, it was shown that the 12273_165 SNP region within LOC534614 may be a candidate marker for growth. The results of the statistical analyses suggested that the genotype of the 12273_165 SNP significantly affected birth weight, weight of the cattle at 24 months of age, average daily gain and carcass cold weight (p<0.05). Consequently, the 12273_165 SNP polymorphisms at the LOC534614 gene may be associated with growth in Hanwoo, and functional validation of polymorphisms in LOC534614 should be performed in the future.

Full-length cDNA, Expression Pattern and Association Analysis of the Porcine FHL3 Gene

  • Zuo, Bo;Xiong, YuanZhu;Yang, Hua;Wang, Jun
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.10
    • /
    • pp.1473-1477
    • /
    • 2007
  • Four-and-a-half LIM-only protein 3 (FHL3) is a member of the LIM protein superfamily and can participate in mediating protein-protein interaction by binding one another through their LIM domains. In this study, the 5'- and 3'- cDNA ends were characterized by RACE (Rapid Amplification of the cDNA Ends) methodology in combination with in silico cloning based on the partial cDNA sequence obtained. Bioinformatics analysis showed FHL3 protein contained four LIM domains and four LIM zinc-binding domains. In silico mapping assigned this gene to the gene cluster MTF1-INPP5B-SF3A3-FHL3-CGI-94 on pig chromosome 6 where several QTL affecting intramuscular fat and eye muscle area had previously been identified. Transcription of the FHL3 gene was detected in spleen, liver, kidney, small intestine, skeletal muscle, fat and stomach, with the greatest expression in skeletal muscle. The A/G polymorphism in exon II was significantly associated with birth weight, average daily gain before weaning, drip loss rate, water holding capacity and intramuscular fat in a Landrace-derived pig population. Together, the present study provided the useful information for further studies to determine the roles of FHL3 gene in the regulation of skeletal muscle cell growth and differentiation in pigs.

Genome-wide Association Study for Warner-Bratzler Shear Force and Sensory Traits in Hanwoo (Korean Cattle)

  • Dang, C.G.;Cho, S.H.;Sharma, A.;Kim, H.C.;Jeon, G.J.;Yeon, S.H.;Hong, S.K.;Park, B.Y.;Kang, H.S.;Lee, S.H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.9
    • /
    • pp.1328-1335
    • /
    • 2014
  • Significant SNPs associated with Warner-Bratzler (WB) shear force and sensory traits were confirmed for Hanwoo beef (Korean cattle). A Bonferroni-corrected genome-wide significant association (p< $1.3{\times}10^{-6}$) was detected with only one single nucleotide polymorphism (SNP) on chromosome 5 for WB shear force. A slightly higher number of SNPs was significantly (p<0.001) associated with WB shear force than with other sensory traits. Further, 50, 25, 29, and 34 SNPs were significantly associated with WB shear force, tenderness, juiciness, and flavor likeness, respectively. The SNPs between p = 0.001 and p = 0.0001 thresholds explained 3% to 9% of the phenotypic variance, while the most significant SNPs accounted for 7% to 12% of the phenotypic variance. In conclusion, because WB shear force and sensory evaluation were moderately affected by a few loci and minimally affected by other loci, further studies are required by using a large sample size and high marker density.

Applications of DNA Microarray in Disease Diagnostics

  • Yoo, Seung-Min;Choi, Jong-Hyun;Lee, Sang-Yup;Yoo, Nae-Choon
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.7
    • /
    • pp.635-646
    • /
    • 2009
  • Rapid and accurate diagnosis of diseases is very important for appropriate treatment of patients. Recent advances in molecular-level interaction and detection technologies are upgrading the clinical diagnostics by providing new ways of diagnosis, with higher speed and accuracy. In particular, DNA microarrays can be efficiently used in clinical diagnostics which span from discovery of diseaserelevant genes to diagnosis using its biomarkers. Diagnostic DNA microarrays have been used for genotyping and determination of disease-relevant genes or agents causing diseases, mutation analysis, screening of single nucleotide polymorphisms (SNPs), detection of chromosome abnormalities, and global determination of posttranslational modification. The performance of DNA-microarray-based diagnosis is continuously improving by the integration of other tools. Thus, DNA microarrays will play a central role in clinical diagnostics and will become a gold standard method for disease diagnosis. In this paper, various applications of DNA microarrays in disease diagnosis are reviewed. Special effort was made to cover the information disclosed in the patents so that recent trends and missing applications can be revealed.