• Title/Summary/Keyword: Polymer nanoparticles

Search Result 453, Processing Time 0.025 seconds

Role of polyethylene glycol (PEG) linkers: trends in antibody conjugation and their pharmacokinetics

  • Kondapa Naidu Bobba;Abhinav Bhise;Subramani Rajkumar;Woonghee Lee;Jeongsoo Yoo
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.6 no.2
    • /
    • pp.155-164
    • /
    • 2020
  • Polyethylene glycol (PEG) has been the most commonly used polymer for the past few decades in the field of biomedical applications due to its gold standard stealth effect. PEGylation of antibody-drug conjugates, liposomes, peptides, nanoparticles, and proteins is done to improve their pharmaceutical efficacy and pharmacokinetic properties. PEGylation of antibodies with various PEG linkers improves targeting ability by increasing the blood circulation time and thus enhances the biodistribution profiles. It also assists in minimizing the immediate capture by the reticuloendothelial system. In this review, we summarize the effect of PEG linkers in an antibody conjugation and their pharmacokinetics in the field of biomedical imaging.

Bulk Heterojunction Solar Cell using Ru Dye Attached PCBM

  • Il-Su Park;Jae-Keun Hwang;Yongseok Jun;Donghwan Kim
    • Journal of Electrochemical Science and Technology
    • /
    • v.15 no.3
    • /
    • pp.421-426
    • /
    • 2024
  • Ru dye (Z-907) is a crucial photosensitizing material in dye-sensitized solar cells (DSSCs). To enhance the utilization of Ru dye's photosensitizing properties in bulk heterojunction solar cells, a method was developed to synthesize phenyl-C61-butyric acid methyl ester (PCBM) nanoparticles that are chemically linked to Ru dye. PCBM contains a methoxy (-OCH3) group, whereas Ru dye incorporates a carboxyl group (-COOH) within its molecular structure. By exploiting these complementary functional groups, a successful bond between Ru dye and PCBM was established through an anhydride functional group. The coupling of PCBM with Ru dye results in a modification of the energy levels, yielding lower LUMO (3.8 eV) and HOMO (6.1 eV) levels, compared with the LUMO (3.0 eV) and HOMO (5.2 eV) levels of Ru dye alone. This configuration potentially facilitates efficient electron transfer from Ru dye to PCBM, alongside promoting hole transfer from Ru dye to the conducting polymer. Consequently, the bulk heterojunction solar cells incorporating this Ru dye-PCBM configuration demonstrate superior performance, with an open circuit voltage (Voc) of 0.62 V, short circuit current (Jsc) of 0.63 mA cm-2, fill factor (FF) of 65.6%, and a photovoltaic conversion efficiency (η) of 0.25%.

Studies on the Michael Addition Reaction between Secondary Amino Groups on the Silica Surface with Poly(ethylene glycol) Diacrylates (실리카 나노입자 표면에 결합된 2차 아미노기와 Poly(ethylene glycol) Diacrylate의 마이클 부가반응에 대한 연구)

  • Jeon, Ha Na;Ha, KiRyong
    • Polymer(Korea)
    • /
    • v.36 no.6
    • /
    • pp.822-830
    • /
    • 2012
  • We used dipodal type bis[3-(trimethoxysilyl)propyl]amine (BTMA) silane coupling agent to modify silica nanoparticles to introduce secondary amino groups on the silica surface. These N-H groups were reacted with three different molecular weights (M.W. = 258, 575, and 700) of poly(ethylene glycol) diacrylates to introduce different attached layer thicknesses on the silica surface by Michael addition reaction. After Michael addition reaction, we used several analytical techniques such as fourier transform infrared spectroscopy (FTIR), elemental analysis (EA) and solid state $^{13}C$ cross-polarization magic angle spinning (CP/MAS) nuclear magnetic resonance spectroscopy to characterize introduced structures. We found almost complete Michael addition reaction of both two acrylate groups of PDGDA with N-H groups of BTMA modified silica to form ${\beta}$-amino acid esters. Between equimolar ratio of pure BTMA and pure PEGDA reaction, only one acrylate group of two acrylate groups of PEGDA reacted with N-H groups of pure BTMA to form ${\beta}$-amino acid ester and the other remaining acrylate group can be used to form a polymer later.

Crosslinked Composite Polymer Electrolyte Membranes Based On Diblock Copolymer and Phosphotungstic Acid (디블록 공중합체와 인텅스텐산을 이용한 가교형 복합 고분자 전해질막)

  • Kim, Jong-Hak;Koh, Joo-Hwan;Park, Jung-Tae;Seo, Jin-Ah;Kim, Jong-Hwa;Jho, Young-Choong
    • Membrane Journal
    • /
    • v.18 no.2
    • /
    • pp.116-123
    • /
    • 2008
  • Proton conductive hybrid nanocomposite polymer electrolyte membranes comprising polystyrene-5-poly (hydroxyethyl methacrylate) (PS-b-PHEMA), sulfosuccinic acid (SA) and phosphotungstic acid (PWA) were prepared by varying PWA concentrations. The PHEMA block was thermally crosslinked by SA via the esterification reaction between -OH of PHEMA and -COOH of SA. Upon the incorporation of PWA into the diblock copolymer, the symmetric stretching bands of the $SO_3^-$ group at $1187cm^{-1}$ shifted to a lower wavenumber at $1158cm^{-1}$, demonstrating that the PWA particles strongly interact with the sulfonic acid groups of SA. When the concentration of PWA was increased to 30wt%, the proton conductivity of the composite membrane at room temperature increased from 0.045 to 0.062 S/cm, presumably due to the intrinsic conductivity of the PWA particles and the enhanced acidity of the sulfonic acid in the membranes. The membrane containing 30wt% of PWA exhibited a proton conductivity of 0.126 S/cm at $100^{\circ}C$. Thermal stability of the composite membranes was also enhanced by introducing PWA nanoparticles.

Transport Properties of Fluorinated Polyimide/PMMA-g-Silica Nanocomposite Membrane (PMMA가 그래프트된 실리카 나노입자를 포함한 불소계 폴리이미드 복합 분리막의 기체 투과 특성)

  • Kwon, Yu-Mi;Im, Hyun-Gu;Kim, Joo-Heon
    • Polymer(Korea)
    • /
    • v.34 no.1
    • /
    • pp.1-7
    • /
    • 2010
  • To enhance the transport properties of gas separation membrane, we prepared 6FDA-6FpDA based polyimide membrane with PMMA-graft-silica nanoparticles. The silica was grafted PMMA which is miscible with 6FDA-based polyimide after surface treatment by 3-methacryloxypropyltrimethoxysilane ($\gamma$-MPS). The untreated silica/6FDA-6FpDA membrane showed greater permeability and less selectivity than PMMA-g-silica/6FDA-6FpDA due to its low dispersion. The transport properties of PMMA-g-silica/6FDA-GFpDA membrane were measured as a function of filler concentration. These membranes were evaluated using pure gases (He, $O_2$, $N_2$, $CO_2$). The increase in permeation was attributed to changes in the free volume distribution until 1 wt%. After 1 wt%, the permeability was decreased by excess silica which decreased effective area in polymer matrix. The selectivity was decreased with increasing permeability on the whole. However, the selectivity of $CO_2$ showed more enhance value.

Microencapsulation of Iron Oxide Nanoparticles and Their Application in Magnetic Levitation of Cells (산화철 나노입자의 마이크로캡슐화와 이를 이용한 세포의 자력부상 배양)

  • Lee, Jin Sil;Lee, Joon ho;Shim, Jae Kwon;Hur, Won
    • Applied Chemistry for Engineering
    • /
    • v.31 no.1
    • /
    • pp.13-18
    • /
    • 2020
  • Iron oxide nanoparticles were microencapsulated using fibroin, a protein polymer of silk fiber, for theragnostic applications. The content of iron oxide was determined to be 4.28% by thermogravimetric analysis and 5.11% by magnetometer. A suspension of murine fibroblast 3T3 cells grown in medium supplemented with iron oxide-microcapsules turned clear in response to the magnetic force and the cells aggregated to the magnet direction. Neodymium magnets placed on the top of the culture dish, and attracted cells to the center of the culture surface. The cells collected on the culture surface aggregated to form a rough spheroid of 2 mm in a diameter after 72 h. In the outer layer of the cell aggregate, cells were relatively large and gathered together to form a dense tissue, but the central part was observed to undergo cell death due to the mass transfer restriction. In the outer layer, iron oxide-microcapsules were lined up like chains in the direction of magnetic force. Using microCT, it was demonstrated that the iron oxides inside the cell aggregate were not evenly distributed but biased to the magnetic direction.

Aminopropyl Functionalized Silica Nanoparticle Dispersed Nafion Composite Membranes for Vanadium Redox Flow Batteries (아미노프로필 관능기를 갖는 실리카 나노 입자가 분산된 나피온 복합막을 이용한 바나듐 레독스 흐름 전지)

  • Lee, Doohee;Yu, Duk Man;Yoon, Sang Jun;Kim, Sangwon;So, Soonyong;Hong, Young Taik
    • Membrane Journal
    • /
    • v.30 no.5
    • /
    • pp.307-318
    • /
    • 2020
  • Conventional perfluorinated sulfonic acid membrane, Nafion is widely used for vanadium redox flow battery (VRFB). It is desired to prevent vanadium ion permeation through a membrane to retain the capacity, and to keep the cell efficiency of a VRFB. Highly proton conductive and chemically stable Nafion membranes, however, suffer from high vanadium permeation, which induce the reduction in charge and discharge capacity by side reactions of vanadium ions. In this study, to resolve the issue, silica nanoparticles, which are functionalized with 3-aminopropyl group (fS) are introduced to enhance the long-term performance of a VRFB by lowering vanadium permeation. It is expected that amine groups on silica nanoparticles are converted to positive ammonium ion, which could deteriorate positively charged vanadium ions' crossover by Gibbs-Donnan effect. There is reduction in proton conductivity may due to acid-base complexation between fS and Nafion side chains, but ion selectivity of proton to vanadium ion is enhanced by introducing fS to Nafion membranes. With the composite membranes of Nafion and fS, VRFBs maintain their discharge capacity up to 80% at a high current density of 150 mA/㎠ during 200 cycles.

An Enhanced Water Solubility and Antioxidant Effects of Seed and Pamace of Schisandra chinensis (Turcz.) Baill Formulation by HME (Hot-Melt Extrusion) (HME (Hot-Melt Extrusion)를 이용한 오미자 씨 및 박의 수용성 및 항산화 효과 향상)

  • Eun Ji Go;Min Ji Kang;Min Jun Kim;Jung Dae Lim;Young-Suk Kim;Jong-Min Lim;Min Jeong Cho;Tae Woo Oh;Seokho Kim;Kyeong Tae Kwak;Byeong Yeob Jeon
    • Herbal Formula Science
    • /
    • v.31 no.4
    • /
    • pp.215-230
    • /
    • 2023
  • Objectives : Schisandra chinensis (Turcz.) Baill contains many nutrients and exhibits high physiological functions. It has been shown that Schisandra seed and pamace contains more nutrients than fruits and thus have higher antioxidant efficacy. In this study, seed and pamace of Schisandra chinensis (Turcz.) Baill (SPSC) were treated with hot-melt extrudate (HME) extrusion to produce water-soluble nanoparticles. Methods : SPSC was treated with HME to prepare nanoparticles. In this process, excipients (hydroxypropyl methylcellulose, pullulan, 2-hydroxylpropyl-beta-cyclodextrin, lecithin) were added to prepare a hydrophilic polymer matrix. To compare and analyze the antioxidant effect and schizandrin content, total flavonoid content, total phenol content and ABTS assay were measured. To confirm the effect of increasing the water solubility of the particles, particle size and water solubility index measurements were performed. The molecular of the material was analyzed using Fourier transform infrared spectroscopy (FT-IR). Results : The particle size of HME extrudates decreased, while total phenols, flavonoids, schizandrin, antioxidant effect, and solubility increased. Through FT-IR, it was confirmed that the SPSC and the extrudate exhibit the same chemical properties. In addition, it was confirmed that when extracted with water, it exhibited a higher antioxidant effect than the ethanol extract. Conclusions : HME technology increased the solubility of SPSC, which are processing by-products, and improved their antioxidant effect to a higher degree. It was confirmed that SPSC could be used as an eco-friendly, high value-added material.

Spectroscopic Analysis on Michael Addition Reaction of Secondary Amino Groups on Silica Surface with 3-(Acryloyloxy)-2-hydroxypropyl Methacrylate (2차 아미노기가 결합된 실리카 나노 입자 표면에 3-(Acryloyloxy)-2-hydroxypropyl Methacrylate의 마이클 부가 반응에 대한 분광학적 분석)

  • Lee, Sangmi;Ha, Ki Ryong
    • Polymer(Korea)
    • /
    • v.38 no.2
    • /
    • pp.257-264
    • /
    • 2014
  • In this study, we modified silica nanoparticles with bis[3-(trimethoxysilyl)propyl]ethylenediamine (BTPED) silane coupling agent, which has two secondary amino groups in a molecule, to introduce amino groups on the silica surface. After modification of silica, we used acrylate group containing 3-(acryloyloxy)-2-hydroxypropyl methacrylate (AHM) to introduce polymerizable methacrylate groups by Michael addition reaction. We used Fourier transform infrared spectroscopy (FTIR), elemental analysis (EA) and liquid and solid state cross polarization magic angle spinning (CP/MAS) nuclear magnetic resonance spectroscopy (NMR) to understand the reactions between N-H groups of BTPED modified silica surface and acrylate groups of AHM monomer. We confirmed Michael addition reaction between BTPED modified silica and AHM completed in 2 hr reaction time. We also found increased methacrylate group introduction with increase of mol ratio of the acrylate group of AHM to N-H group of BTPED modified silica by increase of C=O peak area of measured FTIR spectra. These results were also supported by EA and solid state $^{13}C$ and $^{29}Si$ NMR results.

Proton Conducting Composite Membranes Consisting of PVC-g-PSSA Graft Copolymer and Heteropolyacid (PVC-g-PSSA가지형 공중합체와 헤테로폴리산을 이용한 수소이온 전도성 복합 전해질막)

  • Kim, Jong-Hak;Koh, Jong-Kwan;Choi, Jin-Kyu;Yeon, Seung-Hyeon;Ahn, Ik-Sung;Park, Jin-Won
    • Membrane Journal
    • /
    • v.19 no.2
    • /
    • pp.96-103
    • /
    • 2009
  • A series of organic-inorganic composite membranes from poly(vinyl chloride) (PVC) graft copolymer electrolyte and heteropolyacid (HPA) were prepared for proton conducting membranes. First, poly(vinyl chloride)-g-poly(styrene sulfonic acid) (PVC-g-PSSA) was synthesized by atom transfer radical polymerization (ATRP) using direct initiation of the secondary chlorines of PVC. HPA nanoparticles were then incorporated into the PVC-g-PSSA graft copolymer though the hydrogen bonding interactions, as confirmed by FT-IR spectroscopy. The proton conductivity of the composite membranes increased from 0.049 to 0.068 S/cm at room temperature with HPA contents up to 0.3 weight traction of HPA, presumably due to both the intrinsic conductivity of HPA particles and the enhanced acidity of the sulfonic acid of the graft copolymer. The water uptake decreased from 130 to 84% with the increase of HPA contents up to 0.45 of HPA weight traction, resulting from the decrease in number of water absorption sites due to hydrogen bonding interaction between the HPA particles and the polymer matrix. Thermal gravimetric analysis (TGA) demonstrated the enhancement of thermal stabilities of the composite membranes with increasing concentration of HPA.