• Title/Summary/Keyword: Polymer electrolyte membranes

Search Result 208, Processing Time 0.022 seconds

Characteristics of Nafion Membranes with Pd Thin Films Deposited by DC Magnetron Sputtering Technique (DC마그네트론 스퍼터링으로 Pd박막 입힌 Nafion막의 특성)

  • Hwang, Gi-Ho;Cho, Won-Il;Cho, Byung-Won;Yoon, Sung-Ryul;Ha, Heung-Yong;Oh, In-Hwan;Kim, Kwang-Bum
    • Journal of the Korean Electrochemical Society
    • /
    • v.5 no.2
    • /
    • pp.68-73
    • /
    • 2002
  • Modified polymer electrolyte membranes were fabricated by the applying dc magnetron sputter-deposited Pd thin layers on the surface of the $Nafion^{TM}$ membranes in argon atmosphere. The Pd thin films were characterized by investigating its morphology, methanol permeability, and protonic conductivity. The performance of a direct methanol fuel cell(DMFC) with the modifed polymer electrolyte membrane was also tested by the measurement of its currents and voltages under flowing methanol. The Pd thin film could be a barrier layer to methanol crossover, but the protonic conductivity of the modified polymer membrane was reduced. By using the modified polymer eletrolyte membranes, both the methanol permeability and the protonic conductivity were decreased with increasing the thickness of Pd thin film. However, the performances of DMFC were almost independent on the thickness of Pd thim films. The efffcts of methanol concentration in a feeding fuels on the protonic conductivity and the cell performance were also investigated.

Preparation and Characterization of Covalently Cross-linked SPEEK/Cellulose Composite Membranes with Various Cross Linkage Contents for Water Electrolysis (탄화수소계열 수전해용 공유가교 SPEEK/Cellulose 복합막의 다양한 함량의 가교제에 따른 제조 및 특성)

  • KIM, BOYOUNG;KIM, MINJIN;YOON, YOUNGYO;MOON, SANG-BONG;CHUNG, JANG-HOON
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.29 no.5
    • /
    • pp.411-418
    • /
    • 2018
  • The polymer electrolyte membranes, CL-SPEEK/Cellulose composite membrane I, II, III with the improved electrochemical and mechanical properties were prepared and characterized. The engineering plastic polyether ether ketone (PEEK) and cellulose were sulfonated and cross-linked. The membranes were prepared by sol-gel casting method with different amount of cross-linking reagent. In conclusion, the composite membranes I, II, III showed improved thermostability, tensile strength and oxidative durability. Proton conductivity of the membranes was also improved and the composite membrane I showed 0.1312 S/cm at $80^{\circ}C$ which was the best of those composite membranes.

Inkjet Printing of Polymeric Resistance Humidity Sensor Using UV-Curable Electrolyte Inks

  • Cho, Nam-Bu;Lim, Tai-Ho;Jeon, Young-Min;Gong, Myoung-Seon
    • Macromolecular Research
    • /
    • v.16 no.2
    • /
    • pp.149-154
    • /
    • 2008
  • UV-curable electrolytes inks were prepared by dissolving [2-[(methacryloyloxy)ethyl]dimethyl]propylaminium bromide (MEPAB), 1,5-[bis(2-methacryloxyethyl)dimethyl ammono]penthane dibromide (MDAPD), hexafunctional reactive oligomer (SP1013), trimethylolpropane triacrylate (TMPTA) and a photoinitiator in methanol/2-methoxyethanol. The compositions of the electrolyte inks were MEPAB/MDAPD/SP1013/TMPTA=6/24/17.2/12.8, 15/15/17.2/12.8 and 24/6/17.2/12.8. Humid-membranes were deposited on a gold electrode/alumina electrode using an ink-jet printer equipped with a UV lamp followed by immediate UV curing. The humidity-sensing characteristics including hysteresis, frequency and temperature dependence, response time and water durability were estimated.

Preparation and Characterization of PVA/PSSA-MA Electrolyte Membranes Containing Silica Compounds and Surface Fluorination for Fuel Cell Applications (연료전지 응용을 위한 실리카 성분을 함유하며 표면불소화된 PVA/PSSA-MA 막의 제조 및 특성 연구)

  • Kim, Dae-Hoon;Lee, Bo-Sung;Rhim, Ji-Won
    • Polymer(Korea)
    • /
    • v.34 no.6
    • /
    • pp.540-546
    • /
    • 2010
  • In this manuscript, in order to reduce methanol permeability and, at the same time, to increase proton conductivity THS-PSA containing silica compound, responsible for methanol permeability reduction, and sulfonic acid, responsible for proton conductivity enhancement, was applied onto PVA/PSSA-MA membranes. And in order to improve durability, the resulting membranes, PVA/PSSAMA/THS-PSA, were exposed to 500ppm F2 gas at varying reaction times. The surface-fluorinated membranes were characterized through the measurement of contact angles, thermo-gravimetric analysis, and X-ray photoelectron spectroscopy to observe the physico-chemical changes. For the evaluation of the electro-chemical changes in the resulting membranes, its water contents, ion exchange capacity, proton conductivity, and methanol permeability were measured and then compared with the commercial membrane, Nafion 115. Finally, the membran electrode assembly(MEA) was prepared and the cell voltage against the current density was measured. As fluorination time increased, the contents of F2 increased up to maximum 4.3% and to depth of 50 nm. At 60 min of fluorination, the proton conductivity was 0.036 S/cm, larger than Nafion 115 at 0.024 S/cm, and the methanol permeability was $9.26E-08cm^2/s$, less than Nafion 115 at $1.17E-06cm^2/s$.

Preparation and Characterization of PVA/PAM Electrolyte Membranes Containing Silica Compounds for Direct Methanol Fuel Cell Application (실리카 화합물을 함유한 PVA/PAM 전해질 막의 제조 및 특성과 직접메탄올 연료전지로의 응용)

  • Yoon, Seok-Won;Kim, Dae-Hoon;Lee, Byung-Seong;Lee, Bo-Sung;Moon, Go-Young;Byun, Hong-Sik;Rhim, Ji-Won
    • Polymer(Korea)
    • /
    • v.34 no.1
    • /
    • pp.45-51
    • /
    • 2010
  • This study focuses on the investigation of the possibility of the crosslinked poly (vinyl alcohol) membranes with both poly (acrylic acid-co-maleic acid) (PAM) and 3-(trihydroxysilyl)-1-propane-sulfonic acid (THS-PSA) for the direct methanol fuel cell application. In order to characterize the prepared membranes, the water content, the thermal gravimetric analysis, the ion exchange capacity, the ion conductivity and the methanol permeability measurements were carried out and then compared with the existing Nafion 115 membrane. The ion exchange capacity of the resulting membranes showed 1.6~1.8 meq./g membrane which was improved than Nafion 115, 0.91 meq./g membrane. In the case of the proton conductivity, the THS-PSA introduced membranes gave more excellent $0.042{\sim}0.056\;S{\cdot}cm^{-1}$ than Nafion 115, $0.024\;S{\cdot}cm^{-1}$. On the other hand, the methanol permeability was increased more than Nafion 115 for all the range of THA-PSA concentration.

Double-layered Polymer Electrolyte Membrane based on Sulfonated Poly(aryl ether sulfone)s for Direct Methanol Fuel Cells (직접 메탄올 연료전지용 술폰화 폴리아릴에테르술폰 이중층 고분자 전해질 막의 제조 및 특성)

  • Hong, Young-Taik;Ko, Ha-Na;Park, Ji-Young;Choi, Jun-Kyu;Kim, Sang-Un;Kim, Hyung-Joong
    • Membrane Journal
    • /
    • v.19 no.4
    • /
    • pp.291-301
    • /
    • 2009
  • Double-layered polymer electrolyte membranes were prepared from two different sulfonated poly(aryl ether sulfone) copolymers by the two-step solution casting method for direct methanol fuel cells (DMFC). Sulfonation degrees were adjusted 10% (SPAES-10) and 50% (SPAES-50) by controlling monomer ratios, and the weight ratios of SPAES-10 copolymer were varied in the range of 5~20% to investigate the effect of thickness of coating layers on the membranes. Proton conducting layers were fabricated from SPAES-50 solutions of N-methyl-2-pyrrolidone (NMP) by a solution casting technique, and coating layers formed on the semiliquid surface of the conducting layer by pouring of SPAES-10-NMP solutions onto. It was found that double-layered polymer electrolyte membrane could significantly reduce the methanol crossover through the membrane and maintain high proton conductivities being comparable to single-layered SPAES-50 membrane. The maximum power density of membrane-electrolyte assembly (MEA) at the condition of $60^{\circ}C$ and 2 M methanol-air was $134.01\;mW/cm^2$ for the membrane prepared in the 5 wt-% of SPAES-10 copolymer, and it was corresponding to the 105.5% of the performance of the commercial Nafion 115 membrane.

Polymer Electrolyte Membranes Consisting of PVA-g-POEM Graft Copolymers for Supercapacitors (슈퍼커패시터용 PVA-g-POEM 가지형 공중합체로 구성된 고분자 전해질막)

  • Park, Min Su;Kim, Do Hyun;Lee, Jae Hun;Kim, Jong Hak
    • Membrane Journal
    • /
    • v.29 no.6
    • /
    • pp.323-328
    • /
    • 2019
  • It is a highly important problem for mankind to supply sufficient energy, which has been connected to production and supply of electricity. In terms of the problems, this study fabricated a new sort of solid polymer electrolyte membrane for supercapacitors. The fabricated electrolyte employed grafting poly(oxyethylene methacrylate) (POEM) side chain on poly(vinyl alcohol) (PVA) main chain by free-radical polymerization. It is the first time to utilize PVA-g-POEM graft copolymer as an electrolyte membrane for supercapacitor. The chain behavior of PVA was transformed by grafting POEM side chains, which was analyzed by FT-IR spectra. Also, the capacitance performances of fabricated supercapacitors were explored by cyclic voltammetry (CV), galvanostatic charge/discharge (GCD), and ragone plot. We suggest a new point, the grafting of the electrolyte of supercapacitor in this study.

Synthesis and Characterization of Sulfonated Polyimide Polymer Electrolyte Membranes

  • Kim, Hyoung-juhn;Morton H. Litt;Nam, Sang-Yong;Shin, Eun-mi
    • Macromolecular Research
    • /
    • v.11 no.6
    • /
    • pp.458-466
    • /
    • 2003
  • Several copolyimides have been synthesized with different combinations of comonomers in order to study the relationship between conductivity and water insolubility. m-Phenylenediamine (m-PDA), an angled comonomer, was introduced into the polymer backbone to increase water absorption, and resulted in higher proton conductivity. 2,2-bis(trifluoromethyl)benzidine (TFMB) was used as the comonomer to promote water insolubility. There is a good correlation between the water uptake and conductivity of the polyimides. The copolyimides that had high water uptake also generated high proton conductivity. Those polyimides had good mechanical properties. The copolyimides that have 27 mol% of TFMB and 9 mol% of m-PDA have reasonable conductivities and are insoluble in water at 90$^{\circ}C$, even though they have lower conductivities than those of the homopolymer.

Development of Crosslinked Sulfonated Poly(ether sulfone)s as Novel Polymer Electrolyte Membranes (새로운 연료전지용 술폰화된 PES계 가교 고분자 전해질 막의 개발)

  • Oh, Young-Seok;Lee, Myung-Gun;Kim, Tae-Hyun
    • Journal of the Korean Chemical Society
    • /
    • v.53 no.3
    • /
    • pp.345-354
    • /
    • 2009
  • Sulfonated poly(ether sulfone)s (PESs) with a network structure were prepared by heat-induced crosslinking of the allyl-terminated telechelic sulfone polymers using a bisazide and their structure was analyzed by $^1H$ NMR. Having both uniform distribution of the hydrophilic conductive sites and controlled hydrophobic nature by minimized crosslinking, the crosslinked polymer (PES-60) membrane offered excellent proton conductivity at high temperature with a good thermal stability. In addition, selectivity of the crosslinked membrane (PES-60) was more than three times than that of Nafion$^{(R)}$.

Studies on the Preparation of the Poly(vinyl alcohol) ion Exchange Membranes for Direct Methanol Fuel cell (폴리비닐알콜을 이용한 직접메탄을 연료전지용 이온교환막 제조에 관한 연구)

  • 임지원;천세원;전지현;남상용
    • Membrane Journal
    • /
    • v.13 no.3
    • /
    • pp.191-199
    • /
    • 2003
  • Cation exchange polymer electrolyte membrane for the application of direct methanol fuel cell (DMFC) was studied. Poly(vinyl alcohol)(PVA) well known as a methanol barrier in pervaporation separation was used fur the base materials and poly(acrylic acid)(PAA) was used for the crosslinking agent with various concentration. Methanol permeability, ion conductivity, ion exchange capacity, water contents and fixed ion concentration of the membranes were investigated to evaluate the performance of the fuel cell electrolyte membrane. Methanol permeability and ion conductivity of the membranes were decreased with increasing PAA content and were increased over 15% of PAA content. These phenomena would be explained with the introduction of hydrophilic crosslinking agent. The membranes with 15% content of PAA showed methanol permeability of $6.49{\times}10^{-8}/cm^2/s,\; 2.85{\times}10^{-7}CM^2/s$ at $25^{\circ}C,\; 50^{\circ}C$ of operating temperatures, respectively. ion conductivities of the membrane were $2.66{\times}10^{-3}\;S/cm,$ $9.16{\times}10^{-3}\;S/cm$ at $25^{\circ}C,\; 50^{\circ}C$ of operating temperatures, respectively. ion exchange capacity, water content and fixed ion concentration of the membrane were revealed 1.32 meq/g membrane,0.25 g $H_2$O/g membrane and 5.25 meq/g $H_2O$, respectively.