Studies on the Preparation of the Poly(vinyl alcohol) ion Exchange Membranes for Direct Methanol Fuel cell

폴리비닐알콜을 이용한 직접메탄을 연료전지용 이온교환막 제조에 관한 연구

  • 임지원 (한남대학교 공과대학 화학공학과) ;
  • 천세원 (한남대학교 공과대학 화학공학과) ;
  • 전지현 (한남대학교 공과대학 화학공학과) ;
  • 남상용 (경상대학교 고분자공학과)
  • Published : 2003.09.01

Abstract

Cation exchange polymer electrolyte membrane for the application of direct methanol fuel cell (DMFC) was studied. Poly(vinyl alcohol)(PVA) well known as a methanol barrier in pervaporation separation was used fur the base materials and poly(acrylic acid)(PAA) was used for the crosslinking agent with various concentration. Methanol permeability, ion conductivity, ion exchange capacity, water contents and fixed ion concentration of the membranes were investigated to evaluate the performance of the fuel cell electrolyte membrane. Methanol permeability and ion conductivity of the membranes were decreased with increasing PAA content and were increased over 15% of PAA content. These phenomena would be explained with the introduction of hydrophilic crosslinking agent. The membranes with 15% content of PAA showed methanol permeability of $6.49{\times}10^{-8}/cm^2/s,\; 2.85{\times}10^{-7}CM^2/s$ at $25^{\circ}C,\; 50^{\circ}C$ of operating temperatures, respectively. ion conductivities of the membrane were $2.66{\times}10^{-3}\;S/cm,$ $9.16{\times}10^{-3}\;S/cm$ at $25^{\circ}C,\; 50^{\circ}C$ of operating temperatures, respectively. ion exchange capacity, water content and fixed ion concentration of the membrane were revealed 1.32 meq/g membrane,0.25 g $H_2$O/g membrane and 5.25 meq/g $H_2O$, respectively.

본 연구는 직접메탄을 연료전지(Direct Methanol Fuel Cell, DMFC)용 전해질 막으로 이용되는 양이온교환막의 개발에 관한 것이다. 투과증발공정에서 메탄을 Barrier로 잘 알려져 있는 Poly(vinyl alcohol)을 Base polymer로 사용하고 양이온 교환기가 포함되어 있는 Poly(acrylic acid)를 가교제로 사용하여 가교제의 함량변화에 따른 메탄을 투과도(Methanol permeability), 이온전도도(Ion conductivity), 이온교환용량(Ion exchange capacity), 함수율(Water content), 고정이온농도(Fixed ion concentration)를 통해 막 특성을 측정하였다. 메탄올 투과도와 이온전도도는 가교제인 PAA함량이 증가함에 따라 감소하다가 15%이상에서는 증가하는 경향을 보였다. 이것은 가교제의 함량증가로 인한 가교의 영향과 가교제에 포함되어 있는 친수성기의 도입으로 이와 같은 결과가 나타난다고 예상된다. 실험결과를 통해 DMFC에 적용가능성이 있는 막은 $25^{\circ}C,\; 50^{\circ}C$에서의 메탄을 투과도가 $6.49{\times}10^{-8}/cm^2/s,\; 2.85{\times}10^{-7}/cm^2/s$, $25^{\circ}C,\; 50^{\circ}C$에서의 이온전도도가 $2.66{\times}10^{-3}\;S/cm,\; 9.16{\times}10^{-3}\;S/cm,$ 이온교환용량이 1.32 meq/g membrane, 함수율이 0.25 g $H_2O$/g membrane, 고정이온농도가 5.25 meq/g $H_2O$인 PVA/PAA-$160^{\circ}C$ 15% 막으로 예측된다.

Keywords

References

  1. Scientific American v.281 no.1 Replacing the battery in portable electronics C.K.Dyer https://doi.org/10.1038/scientificamerican0799-88
  2. Platinum Met. Rev. v.40 no.4 Direct Methanol Fuel Cell M.P.Hogarth;G.A.Hard
  3. J. Membr. Sci. v.154 Pervaporation membranes in direct methanol fuel cells Bryan S. Pivovar;Yuxin Wang;E.L.Cussler https://doi.org/10.1016/S0376-7388(98)00264-6
  4. J. App. Polym. Sci. v.73 Properties of electroresponsive poly(vinyl alcohol)/poly(acrylic acid) IPN hydrogels under an electric stimulus S.Y.Kim;H.S.Shin;Y.M.Lee;C.N.Jeong https://doi.org/10.1002/(SICI)1097-4628(19990829)73:9<1675::AID-APP8>3.0.CO;2-9
  5. J. App. Polym. Sci. v.69 Pervaporation of alcohol-toluene mixtures through polymer network hydrogels composed of poly(vinyl alcohol) and poly(acrylic acid) H.C.Park;M.H.V.Mulder https://doi.org/10.1002/(SICI)1097-4628(19980718)69:3<479::AID-APP7>3.0.CO;2-D
  6. Ind. Eng. Chem. Res. v.37 Sorption of alcohol-toluene mixtures in poly(acrylic acid)-poly(vinyl alcohol) blend membranes and its role on pervaporation H.C.Park;R.M.Meertens;M.H.V.Mulder https://doi.org/10.1021/ie980117k
  7. Membrane J. v.8 Pervaporation separation of MTBE-methanol mixture using PVA/PAA crosslinked membranes J.W.Rhim;Y.K.Kim
  8. Membrane J. v.11 Salt effect of metal ion substituted membranes for water-alcohol systems using pervaporation processes J.W.Rhim;J.H.Jun
  9. Membrane J. v.12 Studies on the methanol permeability through PVA/SSA ion exchange membranes substituted with various metal cations C.S.Lee;S.Y.Jung;J.H.Jun;H.S.Shin;J.W.Rhim
  10. Membrane J. v.12 Preparation and characterization of ion exchange membrane for direct methanol fuel cell(DMFC) using sulfonated polysulfone H.S.Shin;C.S.Lee;J.H.Jun;S.Y.Jung;J.W.Rhim;S.Y.Nam
  11. Membrane J. v.12 Pervaporation separation of aqueous ethanol solution through poly(vinyl alcohol) membranes crosslinked poly(acrylic acid-co-maleic acid) S.Y.Nam;K.S.Sung;S.W.Cheon;J.W.Rhim
  12. Membrane J. v.13 The effect of PAA on the characterization of PVA/SSA ion exchange membrane S.W.Cheon;S.H.Hong;H.S.Hwang;S.I.Jeong;J.W.Rhim
  13. J. Membr. Sci. Proton conductivity and methanol permeability of crosslinked poly(vinyl alcohol) membranes containing sulfonic acid group J.W.Rhim;H.B.Park;C.S.Lee;J.H.Jun;Y.M.Lee
  14. J. Membr. Sci. v.125 Perselective properties of PVA-PAA blended membrane used for dehydration of fuel oil by pervaporation C.Vauclair;H.Tarjus;P.Schaetzel https://doi.org/10.1016/S0376-7388(96)00233-5
  15. J. Electrochem. Sci. v.145 Proton and methanol transport in poly(perfluorosulfonate)membranes containing $Cs^ +\;and\;H^ +$ cations V.Tricoli https://doi.org/10.1149/1.1838876
  16. Diffusion E.L.Cussler
  17. 膜學實驗法 中垣正幸
  18. J. Mem. Soc. v.156 G.J.Hwang;Toshiyuki Nagai https://doi.org/10.1016/S0376-7388(98)00331-7
  19. Separation and Purification Technology v.14 W.Cui;J.Kerres;G.Eigenberger https://doi.org/10.1016/S1383-5866(98)00069-0
  20. J. Membr. Sci. v.154 Pervaporation membranes in direct methanol fuel cells Bryan S. Pivovar;Yuxin Wang;E.L.Cussler https://doi.org/10.1016/S0376-7388(98)00264-6
  21. J. Membr. Sci. v.156 Ion exchange membrane based on block copolymers. Part Ⅲ: preparation of cation exchange membrane G.J.Hwang;Toshiyuki Nagai https://doi.org/10.1016/S0376-7388(98)00331-7
  22. J. A. Electrochem. v.29 T.Lehtinen;G.Sundholm
  23. J. Membr. Sci. v.154 Sulfonated and crosslinked polypho-sphazene-based proton-exchange membranes Qunhui Guo;Sally O'Connor;Peter N. Pintauro;Hao Tang https://doi.org/10.1016/S0376-7388(98)00282-8
  24. J. Membr. Sci. v.166 Ionomeric membranes based on partially sulfonated poly(styrene):synthesis, proton conduction and methanol permeation N.Carretta;V.Tricoli;F.Picchioni https://doi.org/10.1016/S0376-7388(99)00258-6
  25. J. Power Sources v.96 Modification of proton conducting membrane for reducing methanol crossover in a direct-methanol fuel cell Won Choon Choi;Seong Ihl Woo https://doi.org/10.1016/S0378-7753(00)00602-9
  26. J. Power Sources v.84 A review of the state-of-the-art of the methanol crossover in direct-methanol fuel cells A.Heinzel;V.M.Barragan https://doi.org/10.1016/S0378-7753(99)00302-X