DOI QR코드

DOI QR Code

Polymer Electrolyte Membranes Consisting of PVA-g-POEM Graft Copolymers for Supercapacitors

슈퍼커패시터용 PVA-g-POEM 가지형 공중합체로 구성된 고분자 전해질막

  • Park, Min Su (Department of Chemical and Biomolecular Engineering, Yonsei University) ;
  • Kim, Do Hyun (Department of Chemical and Biomolecular Engineering, Yonsei University) ;
  • Lee, Jae Hun (Department of Chemical and Biomolecular Engineering, Yonsei University) ;
  • Kim, Jong Hak (Department of Chemical and Biomolecular Engineering, Yonsei University)
  • 박민수 (연세대학교 화공생명공학과) ;
  • 김도현 (연세대학교 화공생명공학과) ;
  • 이재훈 (연세대학교 화공생명공학과) ;
  • 김종학 (연세대학교 화공생명공학과)
  • Received : 2019.10.15
  • Accepted : 2019.10.28
  • Published : 2019.12.31

Abstract

It is a highly important problem for mankind to supply sufficient energy, which has been connected to production and supply of electricity. In terms of the problems, this study fabricated a new sort of solid polymer electrolyte membrane for supercapacitors. The fabricated electrolyte employed grafting poly(oxyethylene methacrylate) (POEM) side chain on poly(vinyl alcohol) (PVA) main chain by free-radical polymerization. It is the first time to utilize PVA-g-POEM graft copolymer as an electrolyte membrane for supercapacitor. The chain behavior of PVA was transformed by grafting POEM side chains, which was analyzed by FT-IR spectra. Also, the capacitance performances of fabricated supercapacitors were explored by cyclic voltammetry (CV), galvanostatic charge/discharge (GCD), and ragone plot. We suggest a new point, the grafting of the electrolyte of supercapacitor in this study.

인류의 에너지 수급은 항상 인간의 삶에 중요한 문제이며, 최근에는 전기 생산 및 공급 문제로 이어지고 있다. 이에 관련하여 본 연구에서는 에너지 저장장치의 일환으로 슈퍼커패시터 용도의 고체 전해질막을 제조하였다. 제조한 전해질막은 poly(vinyl alcohol) (PVA) 주사슬에 poly(oxyethylene methacrylate) (POEM) 곁사슬을 그래프팅하여 사용하였으며, 그래프팅은 자유 라디칼 중합법을 통해 합성하였다. 본 연구에서 사용한 PVA-g-POEM 가지형 공중합체를 슈퍼커패시터 전해질에 적용한 사례는 처음이다. POEM 그래프팅을 통해 PVA가 고유하게 가지고 있던 구조가 변화하였으며, 이를 FT-IR을 통해 분석하였다. 또한, 합성한 공중합체를 이용한 슈퍼커패시터 성능은 cyclic voltammetry (CV), galvanostatic charge/discharge(GCD), ragone plot 등을 통해 분석하였다. 이를 통해 기존에 수계 전해질로 PVA 단일 고분자만 사용하던 분야에 그래프팅 방법이라는 새로운 접근법을 제시하였다.

Keywords

References

  1. N. S. Lewis and D. G. Nocera, "Powering the planet: Chemical challenges in solar energy utilization", Proc. Natl. Acad. Sci., 103, 15729 (2006). https://doi.org/10.1073/pnas.0603395103
  2. P. V. Kamat, "Meeting the clean energy demand: Nanostructure architectures for solar energy conversion", J. Phys. Chem. C, 111, 2834 (2007). https://doi.org/10.1021/jp066952u
  3. P. Palensky and D. Dietrich, "Demand side management: Demand response, intelligent energy systems, and smart loads", IEEE Trans. Ind. Informat, 7, 381 (2011). https://doi.org/10.1109/TII.2011.2158841
  4. T. R. Cook, D. K. Dogutan, S. Y. Reece, Y. Surendranath, T. S. Teets, and D. G. Nocera, "Solar energy supply and storage for the legacy and nonlegacy worlds", Chem. Rev., 110, 6474 (2010). https://doi.org/10.1021/cr100246c
  5. B. Dunn, H. Kamath, and J.-M. Tarascon, "Electrical energy storage for the grid: A battery of choices", Science, 334, 928 (2011). https://doi.org/10.1126/science.1212741
  6. V. Palomares, P. Serras, I. Villaluenga, K. B. Hueso, J. Carretero-Gonzalez, and T. Rojo, "Na-ion batteries, recent advances and present challenges to become low cost energy storage systems", Energy Environ. Sci., 5, 5884 (2012). https://doi.org/10.1039/c2ee02781j
  7. J. M. Tarascon and M. Armand, "Issues and challenges facing rechargeable lithium batteries", Nature, 414, 359 (2001). https://doi.org/10.1038/35104644
  8. M. K. Debe, "Electrocatalyst approaches and challenges for automotive fuel cells", Nature, 486, 43 (2012). https://doi.org/10.1038/nature11115
  9. M. Gratzel, "Recent advances in sensitized mesoscopic solar cells", Accounts Chem. Res., 42, 1788 (2009). https://doi.org/10.1021/ar900141y
  10. M. Winter and R. J. Brodd, "What are batteries, fuel cells, and supercapacitors?", Chem. Rev., 104, 4245 (2004). https://doi.org/10.1021/cr020730k
  11. G. Wang, L. Zhang, and J. Zhang, "A review of electrode materials for electrochemical supercapacitors", Chem. Soc. Rev., 41, 797 (2012). https://doi.org/10.1039/C1CS15060J
  12. Y. Wang, Z. Shi, Y. Huang, Y. Ma, C. Wang, M. Chen, and Y. Chen, "Supercapacitor devices based on graphene materials", J. Phys. Chem. C, 113, 13103 (2009). https://doi.org/10.1021/jp902214f
  13. X. Y. Yu and X. W. Lou, "Mixed metal sulfides for electrochemical energy storage and conversion", Adv. Energy Mater., 8, 1701592 (2018). https://doi.org/10.1002/aenm.201701592
  14. M. R. Benzigar, S. N. Talapaneni, S. Joseph, K. Ramadass, G. Singh, J. Scaranto, U. Ravon, K. Al-Bahily, and A. Vinu, "Recent advances in functionalized micro and mesoporous carbon materials: Synthesis and applications", Chem. Soc. Rev., 47, 2680 (2018). https://doi.org/10.1039/C7CS00787F
  15. D. J. Kim, J. K. Kim, J. H. Lee, H. H. Cho, Y.-S. Bae, and J. H. Kim, "Scalable and bendable organized mesoporous TiN films templated by using a dual-functional amphiphilic graft copolymer for solid supercapacitors", J. Mater. Chem. A, 4, 12497 (2016). https://doi.org/10.1039/C6TA03475F
  16. A. G. Pandolfo and A. F. Hollenkamp, "Carbon properties and their role in supercapacitors", J. Power Sources, 157, 11 (2006). https://doi.org/10.1016/j.jpowsour.2006.02.065
  17. Y. Zhu, S. Murali, M. D. Stoller, K. J. Ganesh, W. Cai, P. J. Ferreira, A. Pirkle, R. M. Wallace, K. A. Cychosz, M. Thommes, D. Su, E. A. Stach, and R. S. Ruoff, "Carbon-based supercapacitors produced by activation of graphene", Science, 332, 1537 (2011). https://doi.org/10.1126/science.1200770
  18. E. Frackowiak and F. Beguin, "Electrochemical storage of energy in carbon nanotubes and nanostructured carbons", Carbon, 40, 1775 (2002). https://doi.org/10.1016/S0008-6223(02)00045-3
  19. M. Sevilla and R. Mokaya, "Energy storage applications of activated carbons: Supercapacitors and hydrogen storage", Energy Environ. Sci., 7, 1250 (2014). https://doi.org/10.1039/C3EE43525C
  20. H. Shi, "Activated carbons and double layer capacitance", Electrochim. Acta, 41, 1633 (1996). https://doi.org/10.1016/0013-4686(95)00416-5
  21. V. Khomenko, E. Raymundo-Pinero, and F. Beguin, "Optimisation of an asymmetric manganese oxide/activated carbon capacitor working at 2V in aqueous medium", J. Power Sources, 153, 183 (2006). https://doi.org/10.1016/j.jpowsour.2005.03.210
  22. Y. Huang, M. Zhong, F. Shi, X. Liu, Z. Tang, Y. Wang, Y. Huang, H. Hou, X. Xie, and C. Zhi, "An intrinsically stretchable and compressible supercapacitor containing a polyacrylamide hydrogel electrolyte", Angew. Chem.-Int. Edit., 56, 9141 (2017). https://doi.org/10.1002/anie.201705212
  23. J. Y. Hwang, M. F. El-Kady, M. Li, C.-W. Lin, M. Kowal, X. Han, and R. B. Kaner, "Boosting the capacitance and voltage of aqueous supercapacitors via redox charge contribution from both electrode and electrolyte", Nano Today, 15, 15 (2017). https://doi.org/10.1016/j.nantod.2017.06.009
  24. J. H. Lee, J. Y. Lim, J. T. Park, J. M. Lee, and J. H. Kim, "Polymethacrylate-comb-copolymer electrolyte for solid-state energy storage devices", Mater. Des., 149, 25 (2018). https://doi.org/10.1016/j.matdes.2018.03.060
  25. M. Karnan, K. Subramani, P. K. Srividhya, and M. Sathish, "Electrochemical studies on corncob derived activated porous carbon for supercapacitors application in aqueous and non-aqueous electrolytes", Electrochim. Acta, 228, 586 (2017). https://doi.org/10.1016/j.electacta.2017.01.095
  26. Z. Niu, L. Zhang, L. Liu, B. Zhu, H. Dong, and X. Chen, "All-solid-state flexible ultrathin micro-supercapacitors based on graphene", Adv. Mater., 25, 4035 (2013). https://doi.org/10.1002/adma.201301332
  27. D. H. Kim, M. S. Park, Y. Choi, K. B. Lee, and J. H. Kim, "Synthesis of PVA-g-POEM graft copolymers and their use in highly permeable thin film composite membranes", Chem. Eng. J., 346, 739 (2018). https://doi.org/10.1016/j.cej.2018.04.036
  28. J. Y. Lim, J. K. Kim, J. M. Lee, D. Y. Ryu, and J. H. Kim, "Amphiphilic block-graft copolymer electrolyte: Synthesis, nanostructure, and use in solid-state flexible supercapacitors", J. Mater. Chem. A, 4, 7848 (2016). https://doi.org/10.1039/C6TA00888G