References
- N. S. Lewis and D. G. Nocera, "Powering the planet: Chemical challenges in solar energy utilization", Proc. Natl. Acad. Sci., 103, 15729 (2006). https://doi.org/10.1073/pnas.0603395103
- P. V. Kamat, "Meeting the clean energy demand: Nanostructure architectures for solar energy conversion", J. Phys. Chem. C, 111, 2834 (2007). https://doi.org/10.1021/jp066952u
- P. Palensky and D. Dietrich, "Demand side management: Demand response, intelligent energy systems, and smart loads", IEEE Trans. Ind. Informat, 7, 381 (2011). https://doi.org/10.1109/TII.2011.2158841
- T. R. Cook, D. K. Dogutan, S. Y. Reece, Y. Surendranath, T. S. Teets, and D. G. Nocera, "Solar energy supply and storage for the legacy and nonlegacy worlds", Chem. Rev., 110, 6474 (2010). https://doi.org/10.1021/cr100246c
- B. Dunn, H. Kamath, and J.-M. Tarascon, "Electrical energy storage for the grid: A battery of choices", Science, 334, 928 (2011). https://doi.org/10.1126/science.1212741
- V. Palomares, P. Serras, I. Villaluenga, K. B. Hueso, J. Carretero-Gonzalez, and T. Rojo, "Na-ion batteries, recent advances and present challenges to become low cost energy storage systems", Energy Environ. Sci., 5, 5884 (2012). https://doi.org/10.1039/c2ee02781j
- J. M. Tarascon and M. Armand, "Issues and challenges facing rechargeable lithium batteries", Nature, 414, 359 (2001). https://doi.org/10.1038/35104644
- M. K. Debe, "Electrocatalyst approaches and challenges for automotive fuel cells", Nature, 486, 43 (2012). https://doi.org/10.1038/nature11115
- M. Gratzel, "Recent advances in sensitized mesoscopic solar cells", Accounts Chem. Res., 42, 1788 (2009). https://doi.org/10.1021/ar900141y
- M. Winter and R. J. Brodd, "What are batteries, fuel cells, and supercapacitors?", Chem. Rev., 104, 4245 (2004). https://doi.org/10.1021/cr020730k
- G. Wang, L. Zhang, and J. Zhang, "A review of electrode materials for electrochemical supercapacitors", Chem. Soc. Rev., 41, 797 (2012). https://doi.org/10.1039/C1CS15060J
- Y. Wang, Z. Shi, Y. Huang, Y. Ma, C. Wang, M. Chen, and Y. Chen, "Supercapacitor devices based on graphene materials", J. Phys. Chem. C, 113, 13103 (2009). https://doi.org/10.1021/jp902214f
- X. Y. Yu and X. W. Lou, "Mixed metal sulfides for electrochemical energy storage and conversion", Adv. Energy Mater., 8, 1701592 (2018). https://doi.org/10.1002/aenm.201701592
- M. R. Benzigar, S. N. Talapaneni, S. Joseph, K. Ramadass, G. Singh, J. Scaranto, U. Ravon, K. Al-Bahily, and A. Vinu, "Recent advances in functionalized micro and mesoporous carbon materials: Synthesis and applications", Chem. Soc. Rev., 47, 2680 (2018). https://doi.org/10.1039/C7CS00787F
- D. J. Kim, J. K. Kim, J. H. Lee, H. H. Cho, Y.-S. Bae, and J. H. Kim, "Scalable and bendable organized mesoporous TiN films templated by using a dual-functional amphiphilic graft copolymer for solid supercapacitors", J. Mater. Chem. A, 4, 12497 (2016). https://doi.org/10.1039/C6TA03475F
- A. G. Pandolfo and A. F. Hollenkamp, "Carbon properties and their role in supercapacitors", J. Power Sources, 157, 11 (2006). https://doi.org/10.1016/j.jpowsour.2006.02.065
- Y. Zhu, S. Murali, M. D. Stoller, K. J. Ganesh, W. Cai, P. J. Ferreira, A. Pirkle, R. M. Wallace, K. A. Cychosz, M. Thommes, D. Su, E. A. Stach, and R. S. Ruoff, "Carbon-based supercapacitors produced by activation of graphene", Science, 332, 1537 (2011). https://doi.org/10.1126/science.1200770
- E. Frackowiak and F. Beguin, "Electrochemical storage of energy in carbon nanotubes and nanostructured carbons", Carbon, 40, 1775 (2002). https://doi.org/10.1016/S0008-6223(02)00045-3
- M. Sevilla and R. Mokaya, "Energy storage applications of activated carbons: Supercapacitors and hydrogen storage", Energy Environ. Sci., 7, 1250 (2014). https://doi.org/10.1039/C3EE43525C
- H. Shi, "Activated carbons and double layer capacitance", Electrochim. Acta, 41, 1633 (1996). https://doi.org/10.1016/0013-4686(95)00416-5
- V. Khomenko, E. Raymundo-Pinero, and F. Beguin, "Optimisation of an asymmetric manganese oxide/activated carbon capacitor working at 2V in aqueous medium", J. Power Sources, 153, 183 (2006). https://doi.org/10.1016/j.jpowsour.2005.03.210
- Y. Huang, M. Zhong, F. Shi, X. Liu, Z. Tang, Y. Wang, Y. Huang, H. Hou, X. Xie, and C. Zhi, "An intrinsically stretchable and compressible supercapacitor containing a polyacrylamide hydrogel electrolyte", Angew. Chem.-Int. Edit., 56, 9141 (2017). https://doi.org/10.1002/anie.201705212
- J. Y. Hwang, M. F. El-Kady, M. Li, C.-W. Lin, M. Kowal, X. Han, and R. B. Kaner, "Boosting the capacitance and voltage of aqueous supercapacitors via redox charge contribution from both electrode and electrolyte", Nano Today, 15, 15 (2017). https://doi.org/10.1016/j.nantod.2017.06.009
- J. H. Lee, J. Y. Lim, J. T. Park, J. M. Lee, and J. H. Kim, "Polymethacrylate-comb-copolymer electrolyte for solid-state energy storage devices", Mater. Des., 149, 25 (2018). https://doi.org/10.1016/j.matdes.2018.03.060
- M. Karnan, K. Subramani, P. K. Srividhya, and M. Sathish, "Electrochemical studies on corncob derived activated porous carbon for supercapacitors application in aqueous and non-aqueous electrolytes", Electrochim. Acta, 228, 586 (2017). https://doi.org/10.1016/j.electacta.2017.01.095
- Z. Niu, L. Zhang, L. Liu, B. Zhu, H. Dong, and X. Chen, "All-solid-state flexible ultrathin micro-supercapacitors based on graphene", Adv. Mater., 25, 4035 (2013). https://doi.org/10.1002/adma.201301332
- D. H. Kim, M. S. Park, Y. Choi, K. B. Lee, and J. H. Kim, "Synthesis of PVA-g-POEM graft copolymers and their use in highly permeable thin film composite membranes", Chem. Eng. J., 346, 739 (2018). https://doi.org/10.1016/j.cej.2018.04.036
- J. Y. Lim, J. K. Kim, J. M. Lee, D. Y. Ryu, and J. H. Kim, "Amphiphilic block-graft copolymer electrolyte: Synthesis, nanostructure, and use in solid-state flexible supercapacitors", J. Mater. Chem. A, 4, 7848 (2016). https://doi.org/10.1039/C6TA00888G