• 제목/요약/키워드: Polymer Slurry

검색결과 78건 처리시간 0.022초

열처리 슬러리코팅법을 이용한 연료전지 가스확산층의 제조 (Fabrication of Gas Diffusion Layer for Fuel Cells Using Heat treatment Slurry Coating Method)

  • 김성진;박성범;박용일
    • 열처리공학회지
    • /
    • 제25권2호
    • /
    • pp.65-73
    • /
    • 2012
  • The Gas Diffusion Layer (GDL) of fuel cell, are required to provide both delivery of reactant gases to the catalyst layer and removal of water in either vapor or liquid form in typical PEMFCs. In this study, the fabrication of GDL containing Micro Porous Layer (MPL) made of the slurry of PVDF mixed with carbon black is investigated in detail. Physical properties of GDL containing MPL, such as electrical resistance, gas permeability and microstructure were examined, and the performance of the cell using developed GDL with MPL was evaluated. The results show that MPL with PVDF binder demonstrated uniformly distributed microstructure without large cracks and pores, which resulted in better electrical conductivity. The fuel cell performance test demonstrates that the developed GDL with MPL has a great potential due to enhanced mass transport property due to its porous structure and small pore size.

Preparation and Characterization of Ionic Liquid-based Electrodes for High Temperature Fuel Cells Using Cyclic Voltammetry

  • Ryu, Sung-Kwan;Choi, Young-Woo;Kim, Chang-Soo;Yang, Tae-Hyun;Kim, Han-Sung;Park, Jin-Soo
    • 전기화학회지
    • /
    • 제16권1호
    • /
    • pp.30-38
    • /
    • 2013
  • In this study, a catalyst slurry was prepared with a Pt/C catalyst, Nafion ionomer solution as a binder, an ionic liquid (IL) (1-butyl-3-methylimidazolium tetrafluoroborate), deionized water and ethanol as a solvent for the application to polymer electrolyte fuel cells (PEFCs) at high-temperatures. The effect of the IL in the electrode of each design was investigated by performing a cyclic voltammetry (CV) measurement. Electrodes with different IL distributions inside and on the surface of the catalyst electrode were examined. During the CV test, the electrochemical surface area (ESA) obtained for the Pt/C electrode without ILs gradually decreased owing to three mechanisms: Pt dissolution/redeposition, carbon corrosion, and place exchange. As the IL content increased in the electrode, an ESA decrement was observed because ILs leaked from the Nafion polymer in the electrode. In addition, the CVs under conditions simulating leakage of ILs from the electrode and electrolyte were evaluated. When the ILs leaked from the electrode, minor significant changes in the CV were observed. On the other hand, when the leakage of ILs originated from the electrolyte, the CVs showed different features. It was also observed that the ESA decreased significantly. Thus, leakage of ILs from the polymer electrolyte caused a performance loss for the PEFCs by reducing the ESA. As a result, greater entrapment stability of ILs in the polymer matrix is needed to improve electrode performance.

Effect of barium silicate filler content on mechanical properties of resin nanoceramics for additive manufacturing

  • Won, Sun;Ko, Kyung-Ho;Park, Chan-Jin;Cho, Lee-Ra;Huh, Yoon-Hyuk
    • The Journal of Advanced Prosthodontics
    • /
    • 제14권5호
    • /
    • pp.315-323
    • /
    • 2022
  • PURPOSE. The purpose of this study was to investigate the effect of barium silicate filler contents on mechanical properties of resin nanoceramics (RNCs) for additive manufacturing (AM). MATERIALS AND METHODS. Additively manufactured RNC specimens were divided into 4 groups depending on the content of ceramic fillers and polymers: 0% barium silicate and 100% polymer (B0/P10, control group); 50% barium silicate and 50% polymer (B5/P5); 60% barium silicate and 40% polymer (B6/P4); 67% barium silicate and 33% polymer (B6.7/P3.3). The compressive strength (n = 15) and fracture toughness (n = 12) of the specimens were measured, and scanning electron microscopy (SEM) with energy dispersive X-ray spectroscopy (EDS) analyses were performed. Independent sample Kruskal-Wallis tests were performed on the compressive strength and fracture toughness test results, and the significance of each group was analyzed at the 95% confidence interval through post-tests using the Bonferroni's method. RESULTS. B6/P4 and B6.7/P3.3 exhibited much higher yield strength than B0/P10 and B5/P5 (P < .05). Compared to the control group (B0/P10), the other three groups exhibited higher ultimate strength (P < .05). The fracture toughness of B6/P4 and B6.7/P3.3 were similar (P > .05). The content of barium silicate and fracture toughness showed a positive correlation coefficient (R = 0.582). SEM and EDS analyses revealed the presence of an oval-shaped ceramic aggregate in B6/P4 specimens, whereas the ceramic filler and polymer substrate were homogeneously mixed in B6.7/P3.3. CONCLUSION. Increasing the ceramic filler content improves the mechanical properties, but it can be accompanied by a decrease in the flowability and the homogeneity of the slurry.

유기물 바인더를 사용한 $YBa_2Cu_3O_{7-{\delta}}$ 초전도 Coil의 제조 (Fabrication of $YBa_2Cu_3O_{7-{\delta}}$ Superconducting Coils with Polymer Binder)

  • 정해원;박승만;김재묵;김성수
    • 한국세라믹학회지
    • /
    • 제27권3호
    • /
    • pp.355-360
    • /
    • 1990
  • One of the possible ways to make a flexible wire of high-Tc superconductiong ceramics is the extrusion of a mixture slurry of superconducting powder with an appropriate polymer binder. The fabrication procedure for $YBa_2Cu_3O_{7-{\delta}}$ superconducting coils with this plastic mass is described. The major factors limiting the formation of extruded wire are the binder content, powder size, and entrapped gas in the mixture slurries. The optimum content of binder for both good flexbility and strength of wire was estimated to be 30wt%. The finer the powder size is, the more homogeneous structure the extruded wire has. The vacuum degassing before extrusion was necessary to remove the entrapped gas in as-extruded wire. The formability of wire depends greatly on the wire radius and binder content. After burning out the binder and the successive sintering, the contacts between the superconducting grains could be made. The resistivity vs. temperature behavior measured in the final wire showed the transition temperature of 90K with narrow transition width. However, the critical current densities of these wires are much lower in comparison to those of conventional bulk specimens.

  • PDF

Determination of Properties of Ionomer Binder Using a Porous Plug Model for Preparation of Electrodes of Membrane-Electrode Assemblies for Polymer Electrolyte Fuel Cells

  • Park, Jin-Soo;Park, Seok-Hee;Park, Gu-Gon;Lee, Won-Yong;Kim, Chang-Soo;Moon, Seung-Hyeon
    • 전기화학회지
    • /
    • 제10권4호
    • /
    • pp.295-300
    • /
    • 2007
  • A new characterization method using a porous plug model was proposed to determine the degree of sulfonation (DS) of ionomer binder with respect to the membrane used in membrane-electrode assemblies (MEAs) and to analyze the fraction of proton pathways through ionomer-catalyst combined electrodes in MEAs for polymer electrolyte fuel cells (PEFCs). Sulfonated poly(ether ether ketone) was prepared to use a polymeric electrolyte and laboratory-made SPEEK solution (5wt.%, DMAc based) was added to catalyst slurry to form catalyst layers. In case of the SPEEK-based MEAs in this study, DS of ionomer binder for catalyst layers should be the same or higher than that of the SPEEK membrane used in the MEAs. The porous plug model suggested that most of protons were via the ionomer binder (${\sim}92.5%$) bridging the catalyst surface to the polymeric electrolyte, compared with the pathways through the alternative between the interstitial water on the surface of ionomer binder or catalyst and the ionomer binder (${\sim}7.3%$) and through only the interstitial water on the surface of ionomer or catalyst (${\sim}0.2%$) in the electrode of the MEA comprising of the sulfonated poly(ether ether ketone) membrane and the 5wt.% SPEEK ionomer binder. As a result, it was believed that the majority of proton at both electrodeds moves through ionomer binder until reaching to electrolyte membrane. The porous plug model of the electrodes of MEAs reemphasized the importance of well-optimized structure of ionomer binder and catalyst for fuel cells.

폼과 폴리머를 활용한 EPB 쉴드 TBM 굴착토의 유동학적 특성 평가 (Evaluating rheological properties of excavated soil for EPB shield TBM with foam and polymer)

  • 황병현;강민규;권기범;양정훈;최항석
    • 한국터널지하공간학회 논문집
    • /
    • 제25권5호
    • /
    • pp.387-401
    • /
    • 2023
  • 토압식(Earth Pressure Balanced, EPB) 쉴드 TBM (Tunnel Boring Machine) 공법은 진동과 소음이 적어 도심지 지하공간 시공에 적극적으로 활용되고 있다. 이때 첨가제 주입은 막장압 유지, 전단강도 감소, 커터의 마모량 최소화, 굴착토의 투수계수 감소 등 다양한 효과를 보인다. 이러한 기술을 쏘일 컨디셔닝이라 하며, 일반적으로 첨가제로 폼, 폴리머, 벤토나이트 슬러리 등을 적용한다. 본 연구에서는 국내 터널 현장에서 빈번하게 조우하는 화강풍화토 시료에 대해 폼과 폴리머를 첨가제로 적용하여 유동학적 특성을 평가하였다. 슬럼프 시험을 통해 작업성(Workability)을 평가하고, 동일한 시험 조건에 대해 실내 가압 베인전단 시험을 수행하여 유동학적 특성을 평가하였다. 이때 슬럼프 값이 높아 작업성이 떨어지는 경우, 폴리머를 추가 적용하여 폴리머 적용이 유동학적 특성에 미치는 영향을 검토하였다. 시험 결과, 폼 주입비(Foam Injection Ratio, FIR)가 증가함에 따라 슬럼프 값은 증가한 반면 토크, 첨두강도 및 항복응력, 겉보기 점도, 틱소트로피 면적은 감소하였다. 하지만, 폴리머 주입비(Polymer Injection Ratio, PIR)는 폼 주입비와 상반되는 결과를 확인하였다. 시험결과 비교를 통해 슬럼프 값과 항복응력 간의 상관관계를 제시하였다. 그리고 폼 만을 적용한 조건과 폼과 폴리머 모두 적용한 조건을 비교한 결과, 유사한 슬럼프 값을 보이더라도 폼과 폴리머 모두 적용한 조건에서 더 낮은 항복응력이 도출되었다.

티탄이 기본인 Ziegler-Natta 촉매에 의한 선형저밀도폴리에틸렌의 제조 (Linear Low Density Polyethylene Preparation by Titanium-Based Ziegler-Natta Catalysts)

  • 이동호;민경은;김차웅
    • 대한화학회지
    • /
    • 제31권1호
    • /
    • pp.110-117
    • /
    • 1987
  • 선형저밀도폴리에틸렌(LLDPE)의 제조를 위해 여러가지 티탄알콕시드-알킬알루미늄 화합물을 촉매로 하여 에틸렌과 1-부텐을 슬러리 상태로 공중합하였다. 이때 촉매성분의 종류 및 농도, 숙성시간, 중합시간과 중합온도 등이 촉매활성과 공중합체 조성에 미치는 영향을 연구하였다. 그리고 공중합체의 성질과 1-부텐 함량과의 관계를 조사하였다. 그 결과 티탄사노르말부톡시드-염화디에틸알류미늄의 촉매를 사용하였을 때 가장 큰 촉매활성, 보다 많은 1-부텐 함량 및 가장 작은 가용성 부분의 LLDPE를 얻을 수 있었다. 얻은 공중합체의 밀도, 유리전이온도, 녹는점 및 녹음열 등은 1-부텐의 함량이 증가함에 따라 감소하였다.

  • PDF

Preparation of rGO-S-CPEs Composite Cathode and Electrochemical Performance of All-Solid-State Lithium-Sulfur Battery

  • Chen, Fei;Zhang, Gang;Zhang, Yiluo;Cao, Shiyu;Li, Jun
    • Journal of Electrochemical Science and Technology
    • /
    • 제13권3호
    • /
    • pp.362-368
    • /
    • 2022
  • The application of polymer composite electrolyte in all-solid-state lithium-sulfur battery (ASSLSBs) can guarantee high energy density and improve the interface contact between electrolyte and electrode, which has a broader application prospect. However, the inherent insulation of the sulfur-cathode leads to a low electron/ion transfer rate. Carbon materials with high electronic conductivity and electrolyte materials with high ionic conductivity are usually selected to improve the electron/ion conduction of the composite cathode. In this work, PEO-LiTFSI-LLZO composite polymer electrolyte (CPE) with high ionic conductivity was prepared. The ionic conductivity was 1.16×10-4 and 7.26×10-4 S cm-1 at 20 and 60℃, respectively. Meanwhile, the composite sulfur cathode was prepared with Sulfur, reduced graphene oxide and composite polymer electrolyte slurry (S-rGO-CPEs). In addition to improving the ion conductivity in the cathode, CPEs also replaces the role of binder. The influence of different contents of CPEs in the cathode material on the performance of the constructed battery was investigated. The results show that the electrochemical performance of the all-solid-state lithium-sulfur battery is the best when the content of the composite electrolyte in the cathode is 40%. Under the condition of 0.2C and 45℃, the charging and discharging capacity of the first cycle is 923 mAh g-1, and the retention capacity is 653 mAh g-1 after 50 cycles.

면 수초지의 지력 및 보류 향상을 위한 첨가제의 적용(제 1보) - 첨가제에 따른 지력 및 보류도 특성 - (Improvements of Strength and Retention of Cotton Handsheet by Additives(I) - Characteristics of Strength and Retention by Additives -)

  • 조유제;김강재;엄태진
    • 펄프종이기술
    • /
    • 제45권5호
    • /
    • pp.23-29
    • /
    • 2013
  • Various properties of cotton handsheet were measured to solve the problem of deformation while storing guar gum(natural polymer) and to improve strength and retention by synthetic polymers(A-PAM, C-PAM, CMC). The results of this study were summarized as follow. The cotton handsheet with 0.2% of A-PAM showed the best tensile index and folding endurance. Retention of fines and fillers in pulp slurry with 0.2% and 0.3% of A-PAM were more excellent than that with guar gum.

수계분산매체에서 나노 $CeO_2$ 입자의 계면전위 거동 (Surface Potential Behavior of Nano $CeO_2$ Particles in Aqueous Media)

  • 이태원;백운규;최성철;이상훈;임형섭;김철진
    • 한국세라믹학회지
    • /
    • 제37권7호
    • /
    • pp.721-725
    • /
    • 2000
  • In this study, the dispersion stability of nano-sized CeO2 particles, synthesized by hydrothermal method in aqueous was evaluated from observing the surface potential behavior of CeO2 particle synthesized by solid state reaction. The isoelectric point(IEP) of nano-sized CeO2 synthesized by hydrothermal synthesis was found to be pH 9 contrary to the isoelectric point of micro-sized CeO2 synthesized by solid state reaction at pH 6.7. IEP was shifted to pH 2.0 as the addition of D-3019 from 0.1 to 1.0 wt%. The surface potential of CeO2 particles synthesized by hydrothermal synthesis was reduced as the addition of B-1001 used as a binder without change of IEP because the absorption of B-1001 polymer on the CeO2 particles shifted the shear plane of CeO2 particles outward away from the surface. This surface potential behavior was well correlated with the dispersion stability of slurry.

  • PDF