DOI QR코드

DOI QR Code

Preparation and Characterization of Ionic Liquid-based Electrodes for High Temperature Fuel Cells Using Cyclic Voltammetry

  • Ryu, Sung-Kwan (Hydrogen and Fuel Cell Research Department, Korea Institute of Energy Research (KIER)) ;
  • Choi, Young-Woo (Hydrogen and Fuel Cell Research Department, Korea Institute of Energy Research (KIER)) ;
  • Kim, Chang-Soo (Hydrogen and Fuel Cell Research Department, Korea Institute of Energy Research (KIER)) ;
  • Yang, Tae-Hyun (Hydrogen and Fuel Cell Research Department, Korea Institute of Energy Research (KIER)) ;
  • Kim, Han-Sung (Department of Chemical Engineering, Yonsei University) ;
  • Park, Jin-Soo (Department of Environmental Engineering, College of Engineering, Sangmyung University)
  • Received : 2013.01.21
  • Accepted : 2013.02.25
  • Published : 2013.02.28

Abstract

In this study, a catalyst slurry was prepared with a Pt/C catalyst, Nafion ionomer solution as a binder, an ionic liquid (IL) (1-butyl-3-methylimidazolium tetrafluoroborate), deionized water and ethanol as a solvent for the application to polymer electrolyte fuel cells (PEFCs) at high-temperatures. The effect of the IL in the electrode of each design was investigated by performing a cyclic voltammetry (CV) measurement. Electrodes with different IL distributions inside and on the surface of the catalyst electrode were examined. During the CV test, the electrochemical surface area (ESA) obtained for the Pt/C electrode without ILs gradually decreased owing to three mechanisms: Pt dissolution/redeposition, carbon corrosion, and place exchange. As the IL content increased in the electrode, an ESA decrement was observed because ILs leaked from the Nafion polymer in the electrode. In addition, the CVs under conditions simulating leakage of ILs from the electrode and electrolyte were evaluated. When the ILs leaked from the electrode, minor significant changes in the CV were observed. On the other hand, when the leakage of ILs originated from the electrolyte, the CVs showed different features. It was also observed that the ESA decreased significantly. Thus, leakage of ILs from the polymer electrolyte caused a performance loss for the PEFCs by reducing the ESA. As a result, greater entrapment stability of ILs in the polymer matrix is needed to improve electrode performance.

Keywords

References

  1. J. Zhang, Z. Xie, J. Zhang, Y. Tang, C. Song, T. Navessin, Z. Shi, D. Song, H. Wang, D. P. Wilkinson, ZS. Liu, and S. Holdcroft, 'High temperature PEM fuel cells', J. Power Sources, 160, 872 (2006). https://doi.org/10.1016/j.jpowsour.2006.05.034
  2. W. H. J. Hogarth, J. C. Diniz da Costa, and G. Q.(Max) Lu, 'Solid acid membranes for high temperature (> $140^{\circ}C$) proton exchange membrane fuel cells', J. Power. Sources, 142, 223 (2005). https://doi.org/10.1016/j.jpowsour.2004.11.020
  3. J. Hu, H. Zhang, Y. Zhai, G. Liu, J. Hu, and B. Yi, 'Performance degradation studies on PBI/H3PO4 high temperature PEMFC and one-dimensional numerical analysis', Electrochim. Acta, 52, 394 (2006). https://doi.org/10.1016/j.electacta.2006.05.020
  4. A. S. Arico, A. Stassi, E. Modica, R. Ornelas, I. Gatto, E. Passalacqua, and V. Antonucci, 'Performance and degradation of high temperature polymer electrolyte fuel cell catalysts', J. Power. Sources, 178, 525 (2008). https://doi.org/10.1016/j.jpowsour.2007.10.005
  5. J. Fuller, A. C. Breda, and R. T. Carlin, 'Ionic Liquid- Polymer Gel Electrolytes', J. Electrochem. Soc., 144, L67 (1997). https://doi.org/10.1149/1.1837555
  6. Z. Zhou, S. Li, Y. Zhang, M. Liu, and W. Li, 'Promotion of Proton Conduction in Polymer Electrolyte Membranes by 1H-1,2,3-Triazole', J. Am. Chem. Soc., 127, 10824 (2005). https://doi.org/10.1021/ja052280u
  7. A. Schechter and R. F. Savinell, 'Imidazole and 1-methyl imidazole in phosphoric acid doped polybenzimidazole, electrolyte for fuel cells', Solid State Ionics, 147, 181 (2002). https://doi.org/10.1016/S0167-2738(02)00040-1
  8. J. Sun, L. R. Jordan, M. Forsyth, and D. R. MacFarlane, 'Acid-Organic base swollen polymer membranes', Electrochim. Acta, 46, 1703 (2001). https://doi.org/10.1016/S0013-4686(00)00774-X
  9. K. D. Kreuer, A. Fuchs, M. Ise, M. Spaeth, and J. Maier, 'Imidazole and Pyrazole-base proton conducting polymers and liquids', Electrochim. Acta, 43, 1281 (1998). https://doi.org/10.1016/S0013-4686(97)10031-7
  10. B. Singh and S. S. Sekhon, 'Ion conducting behaviour of polymer electrolytes containing ionic liquids' Chem. Phys. Lett., 34, 414, (2005).
  11. M. Doyle, S.K. Choi, and G. Proulx, 'High-Temperature Proton Conducting Membranes Based on Perfluorinated Ionomer Membrane-Ionic Liquid Composites', J. Electrochem. Soc., 147, 34 (2000). https://doi.org/10.1149/1.1393153
  12. A. Lewandowski and A. Swinderski, 'New composite solid electrolytes based on a polymer and ionic liquids', Solid State Ionics, 169, 21 (2004). https://doi.org/10.1016/j.ssi.2003.02.004
  13. Q. Che, B. Sun, and R. He, 'Preparation and characterization of new anhydrous, conducting membranes based on composites of ionic liquid trifluoroacetic propylamine and polymers of sulfonated poly (ether ether) ketone or polyvinylidenefluoride' Electrochim. Acta, 53, 4428 (2008). https://doi.org/10.1016/j.electacta.2008.01.028
  14. E. K. Cho, J. S. Park, S. S. Sekhon, G. G. Park, T. H. Yang, W. Y. Lee, C. S. Kim, and S. B. Park, 'A Study on Proton Conductivity of Composite Membranes with Various Ionic Liquids for High-Temperature Anhydrous Fuel Cells', J. Electrochem. Soc., 156 (2), B197 (2009). https://doi.org/10.1149/1.3031406
  15. G. Sasikumar, J. W. Ihm, and H. Ryu, 'Dependence of optimum Nafion content in catalyst layer on platinum loading', J. Power Sources, 132,11 (2004). https://doi.org/10.1016/j.jpowsour.2003.12.060
  16. R. O'Hayre, S. W. Cha, W. Colella, and F. B. Prinz, Fuel Cell Fundamentals 2nd Ed., Wiley, p. 252 (2006).
  17. Y. Y. Shao, G. P. Yin, and Y. Z, Gao, Chin. 'Electrochemical surface area enhanced by dimethyl ether (DME) electrooxidation', J. Inorg. Chem., 21, 1060 (2005).
  18. R. M. Darling and J. P. Meyers, 'Kinetic Model of Platinum Dissolution in PEMFCs', J. Electrochem. Soc., 150, A1523 (2003). https://doi.org/10.1149/1.1613669
  19. K. Kinoshita, J. T. Lundquist, and P. Stonehart, 'Potential cycling effects on platinum electrocatalyst surfaces', J. Electroanal. Chem. Interfacial Electrochem., 48, 157 (1973). https://doi.org/10.1016/S0022-0728(73)80257-8
  20. J. F. Liopis and F. Colom, In Encyclopedia of Electrochemistry of Elements, Vol. VI, (Ed: A. J. Bard), Marcel Dekker, New York, p. 169 (1976).
  21. R. Rajagopalan, A. Ponnaiyan, P. J. Mankidy, A. W. Brooks, B. Yi, and H. C. Foley, 'Molecular sieving platinum nanoparticle catalysts kinetically frozen in nanoporous carbon', Chem. Commun. (Cambridge), 21, 2498 (2004).
  22. F. Rodriguez-Reinoso, 'The role of carbon materials in heterogeneous catalysis', Carbon, 36, 159 (1998). https://doi.org/10.1016/S0008-6223(97)00173-5
  23. F. Coloma, A. Sepulvedaescribano, J. L. G. Fierro, and F. Rodriguez-Reinoso, 'Preparation of Platinum Supported on Pregraphitized Carbon Blacks' Langmuir, 10, 750 (1994). https://doi.org/10.1021/la00015a025
  24. W. Z. Li, C. H. Liang, W. J. Zhou, J. S. Qiu, Z. H. Zhou, G. Q. Sun, and Q. Xin, 'Preparation and Characterization of Multiwalled Carbon Nanotube-Supported Platinum for Cathode Catalysts of Direct Methanol Fuel Cells', J. Phys. Chem. B, 107, 6292 (2003). https://doi.org/10.1021/jp022505c
  25. M. L. Toebes, F. F. Prinsloo, J. H. Bitter, A. J. van Dillen, and K. P. de Jong, 'Influence of oxygen-containing surface groups on the activity and selectivity of carbon nanofiber-supported ruthenium catalysts in the hydrogenation of cinnamaldehyde', J. Catal., 214, 78 (2003). https://doi.org/10.1016/S0021-9517(02)00081-7
  26. J. L. Figueiredo, M. F. R. Pereira M. M. A. Freitas, and J. J. M. Orfao, 'Modification of the surface chemistry of activated carbons', Carbon, 37, 1379 (1999). https://doi.org/10.1016/S0008-6223(98)00333-9
  27. Z. Siroma, N. Fujiwara, T. Ioroi, S. Yamazaki, K. Yasuda, and Y. Miyazaki, 'Dissolution of $Nafion^{(R)}$ membrane and recast $Nafion^{(R)}$ film in mixtures of methanol and water', J. Power Sources, 126, 41 (2004). https://doi.org/10.1016/j.jpowsour.2003.08.024
  28. C. H. Paik, T. D. Jarvi, and W. E. O'Grady, 'Extent of PEMFC Cathode Surface Oxidation by Oxygen and Water Measured by CV', Electrochem. Solid-State Lett., 7, A82 (2004). https://doi.org/10.1149/1.1649698
  29. M. S. Wilson, F. H. Garzon, K. E. Sickafus, and S. Gottesfeld, 'Surface area loss of supported platinum in polymer electrolyte fuel cells', J. Electrochem. Soc., 140, 2872 (1993). https://doi.org/10.1149/1.2220925
  30. R. M. Darling and J. P. Meyers, 'Kinetic Model of Platinum Dissolution in PEMFCs', J. Electrochem. Soc., 150, A1523 (2003). https://doi.org/10.1149/1.1613669
  31. D. Lee and S. Hwang, 'Effect of loading and distributions of Nafion ionomer in the catalyst layer for PEMFCs', International Journal of Hydrogen Energy, 33, 2790 (2008). https://doi.org/10.1016/j.ijhydene.2008.03.046
  32. E. Passalacqua, F. Lufrano, G. Squadrio, A. Patti, and L. Giorgi, 'Nafion content in the catalyst layer of polymer electrolyte fuel cells: effects on structure and performance', Electrochim. Acta, 46, 799 (2001). https://doi.org/10.1016/S0013-4686(00)00679-4
  33. J. Sasikumar, J. W. Ihm, and H. Ryu, 'Dependence of optimum Nafion content in catalyst layer on platinum loading', J. Power Sources, 132, 11 (2004). https://doi.org/10.1016/j.jpowsour.2003.12.060
  34. E. Antolini, L. Giorgi, A. Pozio, and E. Passalacqua, 'Influence of Nafion loading in the catalyst layer of gasdiffusion electrodes for PEFC', J. Power Sources, 77, 136 (1999). https://doi.org/10.1016/S0378-7753(98)00186-4
  35. S. Gamburzev and A. Appleby, 'Recent progress in performance improvement of the proton exchange membrane fuel cell (PEMFC)', J. Power Sources, 107, 5 (2002). https://doi.org/10.1016/S0378-7753(01)00970-3
  36. Z. Qi and A. Kaufman, 'Low Pt loading high performance cathodes for PEM fuel cells', J. Power Sources, 113, 37 (2003). https://doi.org/10.1016/S0378-7753(02)00477-9
  37. E. Passalacqua, F. Lufrano, G. Squadrito, A. Patti, and L. Giorgi, 'Nafion content in the catalyst layer of polymer electrolyte fuel cells: effects on structure and performance', Electrochim. Acta, 46, 799 (2001). https://doi.org/10.1016/S0013-4686(00)00679-4
  38. Y. Oono, A. Sounai, and Michio Hori, 'Influence of the phosphoric acid-doping level in a polybenzimidazole membrane on the cell performance of high-temperature proton exchange membrane fuel cells', J. Power Sources, 189, 943 (2009). https://doi.org/10.1016/j.jpowsour.2008.12.115

Cited by

  1. A Cyclic Voltammetric Study of Electrodes for Reverse Electrodialysis vol.16, pp.3, 2013, https://doi.org/10.5229/JKES.2013.16.3.145
  2. A Study on Sulfonated Fluorenyl Poly(ether sulfone)s as Catalyst Binders for Polymer Electrolyte Fuel Cells vol.19, pp.2, 2016, https://doi.org/10.5229/JKES.2016.19.2.39
  3. Chemical modification of Nafion membranes by protic ionic liquids: the key role of ionomer–cation interactions vol.10, pp.39, 2014, https://doi.org/10.1039/C4SM01473A