Linear Low Density Polyethylene Preparation by Titanium-Based Ziegler-Natta Catalysts

티탄이 기본인 Ziegler-Natta 촉매에 의한 선형저밀도폴리에틸렌의 제조

  • Dong-Ho Lee (Department of Polymer Science, College of Engineering, Kyungpook National University) ;
  • Kyung-Eun Min (Department of Polymer Science, College of Engineering, Kyungpook National University) ;
  • Cha-Ung Kim (Department of Polymer Science, College of Engineering, Kyungpook National University)
  • 이동호 (경북대학교 공과대학 고분자공학과) ;
  • 민경은 (경북대학교 고분자공학과) ;
  • 김차웅 (경북대학교 공과대학 고분자공학과)
  • Published : 1987.02.20

Abstract

For the preparation of linear low density polyethylene (LLDPE), the copolymerization of ethylene and 1-butene was carried out with various catalysts of titanium alkoxidealkylaluminum compound in slurry phase. The effects of catalyst components, aging time, concentration of catalyst components, polymerization time and temperature on the catalytic activity and copolymer composition were examined. The properties of copolymer obtained were also considered with the correlation to the 1-butene contents. It has been found that the titanium tetra-n-butoxide-diethylaluminum chloride catalyst system was the most suitable for the production of LLDPE with higher catalytic activity, more 1-butene content and less soluble parts. The density, glass transition temperature, melting point and heat of fusion of copolymer were decreased with increasing 1-butene contents.

선형저밀도폴리에틸렌(LLDPE)의 제조를 위해 여러가지 티탄알콕시드-알킬알루미늄 화합물을 촉매로 하여 에틸렌과 1-부텐을 슬러리 상태로 공중합하였다. 이때 촉매성분의 종류 및 농도, 숙성시간, 중합시간과 중합온도 등이 촉매활성과 공중합체 조성에 미치는 영향을 연구하였다. 그리고 공중합체의 성질과 1-부텐 함량과의 관계를 조사하였다. 그 결과 티탄사노르말부톡시드-염화디에틸알류미늄의 촉매를 사용하였을 때 가장 큰 촉매활성, 보다 많은 1-부텐 함량 및 가장 작은 가용성 부분의 LLDPE를 얻을 수 있었다. 얻은 공중합체의 밀도, 유리전이온도, 녹는점 및 녹음열 등은 1-부텐의 함량이 증가함에 따라 감소하였다.

Keywords

References

  1. Principles of Polymerization G. Odian
  2. Plastic Technology
  3. Ind. Eng. Chem. Prod. Res. Dev. v.22 N. Platzer
  4. Petrotech. v.7 N. Kashiwa
  5. Polymer (Korea) v.7 Y.H. Kim
  6. Zeolite Molecular Sieves D.W. Breck
  7. J. Appl. Polym. Sci. v.25 D.H. Lee;C.C. Hsu
  8. J. Am. Chem. Soc. v.75 W.M.D. Bryant;R.C. Votor
  9. J. Polym. Sci. Polym. Chem. Ed. v.22 B.K. Hunter;K.E. Russell;M.V. Scammell;S.L. Thompson
  10. J. Polym. Sci. Polym. Lett. Ed. v.21 H.H. Chuah;R.E. Micheli;R.S. Porter
  11. Ziegler-Natta Catalysts and Polymerization J. Boor, Jr.
  12. Makoromol. Chem. Rapid Commn. v.4 G. Guastalla;U. Giannini
  13. J. Polym. Sci. Polym. Chem. Ed. v.18 S.S. Ivanchef;A.A. Baulin;A.G. Rodionov
  14. J. Polym. Sci. v.51 G. Mazzanti;A. Valvassori;G. Sartori
  15. J. Polym. Sci. v.A-1;5 I.D. Rubin
  16. J. Polym. Sci. Polym. Chem. Ed. v.21 Y.V. Kissin;D. L. Beach
  17. Macromolecules v.4 C. Cozewith;G. Ver Strate
  18. J. Polym. Sci. v.C-1 J. Boor, Jr.
  19. J. Polym. Sci. v.C-16 A. Zambelli;G. Natta;I. Pasquon;R. Signorini
  20. J. Polym. Sci. v.A-1;10 J.A. Water;G. A. Mortimer
  21. J. Am. Chem. Soc. v.75 M.J. Roedel
  22. J. Am. Chem. Soc. v.75 C.A. Sperati;W.A. Franta;H. W. Stark-weather, Jr.
  23. J. Polym. Sci. Polym. Phys. Ed. v.22 G. Gapaccio;I.M. Ward
  24. Thermal Characterization of Polymeric Materials E.A. Turi(ed.)
  25. J. Polym. Sci., Polym. Chem. Ed. v.20 Z. Florjanczyk;B. Deopura;R.S. Stein;O. Vogl
  26. J. Appl. Polym. Sci. v.28 Attalla;F. Bertinotti
  27. Macromolecules v.3 F.C. Stehling;L. Mandelkern