• Title/Summary/Keyword: Polymer Electronic Device

Search Result 193, Processing Time 0.031 seconds

Impedance spectroscopy analysis of polymer light emitting diodes with the LiF buffer layer at the cathode/organic interface (LiF 음극 버퍼층을 사용한 폴리머의 효율 향상에 관한 임피던스 분석)

  • Kim, H.M.;Jang, K.S.;Yi, J.;Sohn, Sun-Young;Park, Kuen-Hee;Jung, Dong-Geun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.277-278
    • /
    • 2005
  • Admittance Spectroscopic analysis was applied to study the effect of LiF buffer layer and to model the equivalent circuit for poly(2-methoxy-5-(2'-ethylhexyloxy)-1,4-phenylenevinylene) (MEH-PPV)-based polymer light emitting diodes (PLEDs) with the LiF cathode buffer layer. The single layer device with ITO/MEH-PPV/Al structure can be modeled as a simple parallel combination of resistor and capacitor. Insertion of a LiF layer at the Al/MEH-PPV interface shifts the highest occupied molecular orbital level and the vacuum level of the MEH-PPV layer as a result the barrier height for electron injection at the Al/MEH-PPV interface is reduced. The admittance spectroscopy measurement of the devices with the LiF cathode buffer layer shows reduction in contact resistance ($R_c$), parallel resistance ($R_p$) and increment in parallel capacitance ($C_p$).

  • PDF

Stable Blue Electroluminescence from Fluorine-containing Polymers (불소 함유된 고분자를 이용한 안정한 청색 발광 유기 EL)

  • Kang In-Nam
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.6
    • /
    • pp.568-573
    • /
    • 2006
  • We have synthesized new blue light emitting random copolymers, poly(9,9'-n-dioctylfluorene-co-perfluorobenzene-1,4-diyl)s (PFFBs), via Ni(0)-mediated coupling reactions. The weight-average molecular weights ($M_w$) of the PFFB copolymers ranged from 9,000 to 15,000. The PFFB copolymers dissolved in common organic solvents such as THF and toluene. The PL emission peaks of the PFFB copolymers were at around 420, 440, and 470 nm. EL devices were fabricated in ITO/PEDOT/polymer/Ca/Al configurations using these polymers. These EL devices were found to exhibit pure blue emission with approximate CIE coordinates of (0.15, 0.11) at $100cd/m^2$. The blue emissions of these devices might be due to the restriction of the polymer chains to aggregation by introducing of the highly electronegative fluorine moieties. The maximum brightnesses of the PFFB copolymer devices ranged from 140 to $3600cd/m^2$ with maximum efficiencies from 0.2 to 0.6 cd/A. The enhanced efficiency of the PFFB (8/2) copolymer device results from the inhibition of excimer formation by the introduction of the electronegative fluorine moieties into the copolymers.

Study on Electro-optical Characteristics in the Optically Compensated Splay Cell using Polymer Surface Alignment (고분자 표면 배향을 이용한 광학 보상 퍼짐 셀의 특성 향상 연구)

  • Kim, Seong-Su;Hwang, Seong-Jin;Hwang, Seong-Han;Lee, Myong-Hoon;Lee, Seung-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.424-425
    • /
    • 2007
  • We have studied the optically compensated splay mode using reactive mesogen (RM) monomer to reduce setting voltage and phase transition time from initial bend to splay state. When the OCS cell has low pretilt angle close to $45^{\circ}C$, OCS state can be formed easily. The low pretilt angle was formed through the polymerization of UV curable reactive RM monomer at the surfaces. In this way, reorientation of the LC is well defined and thus the device shows better performances in setting voltage and phase transition time.

  • PDF

Reliability Evaluation Criteria and Multi-Stress Aging Test for Polymer Insulator (폴리머 현수애자의 신뢰성 평가 및 복합가속열화 방법)

  • Park, Hoy-Yul;Kang, Dong-Pil;Ahn, Myeong-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07a
    • /
    • pp.469-472
    • /
    • 2004
  • There have been numerous accelerated aging laboratory tests for evaluating suitability of polymeric materials and devices. Aging test for materials and its full scale device has been conducted, but poor correlation of aging test such as service experience were observed. Service experience plays a key role in the utility section of composite insulators. A meaningful and reliable accelerated aging test is needed for evaluating composite insulator. During the service these insulators are subjected to aging stress such as humidity, pollution, and electrical field, and erosion and tracking of the weathershed occurs. This paper presents the criteria of reliability evaluation and evaluation facilities for 22.9 kV suspension composite insulator. We adopt the criteria of reliability evaluation consist of two test methods. One is CEA tracking wheel test for examining the tracking and erosion performance of composite insulator. The other is multi-stress aging test for examining effects of environmental factors such as UV, temperature, humidity, etc on composite insulator.

  • PDF

Electrical Applications of OTFTs

  • Kim, Seong-Hyun;Koo, Jae-Bon;Lim, Sang-Chul;Ku, Chan-Hoi;Lee, Jung-Hun;Zyung, Tae-Hyoung
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.170-170
    • /
    • 2006
  • [ ${\pi}-conjugated$ ] organic and polymeric semiconductors are receiving considerable attention because of their suitability as an active layer for electronic devices. An organic inverter with a full swing and a high gain can be obtained through the good qualities of the transfer characteristics of organic thin-film transistors (OTFTs); for example, a low leakage current, a threshold voltage ($V_{th}$) close to 0 V, and a low sub-threshold swing. One of the most critical problems with traditional organic inverters is the high operating voltage, which is often greater than 20 V. The high operating voltage may result in not only high power consumption but also device instabilities such as hysteresis and a shift of $V_{th}$ during operation. In this paper, low-voltage and little-hysteresis pentacene OTFTs and inverters in conjunction with PEALD $Al_{2}O_{3}\;and\;ZrO_{2}$ as the gate dielectrics are demonstrated and the relationships between the transfer characteristics of OTFT and the voltage transfer characteristics (VTCs) of inverter are investigated.

  • PDF

Characteristics of Photoresist-derived Carbon Nanofibers for Li-ion Full Cell Electrode

  • Kim, Hwan-Jun;Joo, Young-Hee;Lee, Sang-Min;Kim, Chang-Il
    • Transactions on Electrical and Electronic Materials
    • /
    • v.15 no.5
    • /
    • pp.265-269
    • /
    • 2014
  • Carbon nanofiber electrode has been fabricated for energy storage systems by the electrospinning of SU-8 precursor and subsequent pyrolysis. Various parameters including the applied voltage, the distance between syringe tip and target collector and the flow rate of the polymer affect the diameter of SU-8 electrospun nanofibers. Shrinkage during pyrolysis decreases the fiber diameter. As the pyrolysis temperature increases, the resistivity decreases dramatically. Low resistivity is one of the important characteristics of the electrodes of an energy storage device. Given the advantages of carbon nanofibers having high external surface area, electrical conductivity, and lithium intercalation ability, SU-8 derived carbon nanofibers were applied to the anode of a full lithium ion cell. In this paper, we studied the physical properties of carbon fiber electrode by scanning transmission microscopy, thermal gravimetric analysis, and four-point probe. The electrochemical characteristics of the electrode were investigated by cyclic voltammogram and electrochemical impedance spectroscopy plots.

Thin Metal Electrodes for Semitransparent Organic Photovoltaics

  • Lee, Kyu-Sung;Kim, Inho;Yeon, Chang Bong;Lim, Jung Wook;Yun, Sun Jin;Jabbour, Ghassan E.
    • ETRI Journal
    • /
    • v.35 no.4
    • /
    • pp.587-593
    • /
    • 2013
  • We demonstrate semitransparent organic photovoltaics (OPVs) based on thin metal electrodes and polymer photoactive layers consisting of poly(3-hexylthiophene) and [6,6]-phenyl $C_{61}$ butyric acid methyl ester. The power conversion efficiency of a semitransparent OPV device comprising a 15-nm silver (Ag) rear electrode is 1.98% under AM 1.5-G illumination through the indium-tin-oxide side of the front anode at 100 $mW/cm^2$ with 15.6% average transmittance of the entire cell in the visible wavelength range. As its thickness increases, a thin Ag electrode mainly influences the enhancement of the short circuit current density and fill factor. Its relatively low absorption intensity makes a Ag thin film a viable option for semitransparent electrodes compatible with organic layers.

Electro-optic characteristics of novel biased vertical alignment device using the polymerized reactive mesogen (광경화성 단분자를 이용한 새로운 수직배향 액정 디바이스의 전기 광학적 특성연구)

  • Kim, Dae-Hyun;Kim, Sung-Min;Cho, In-Young;Kim, Woo-Il;Kwon, Dong-Won;Son, Jong-Ho;Ryu, Jae-Jin;Kim, Kyeong-Hyeon;Lee, Seung-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.269-270
    • /
    • 2009
  • The biased vertical alignment (BVA) liquid crystal (LC) mode shows a has a distinct advantage of lower manufacture cost due to the elimination of a lithographic process step to form either ITO-patterning or protrusions on the color-filter substrates. However, those devices have complex voltage conditions which is the respective induce voltage on common electrode, pixel electrode and bias electrode when positive and negative frame. In order to overcome the complex voltage condition, the pretilt angles is controlled by photo polymerization of the UV-curable reactive mesogen (RM). According to our studies, voltages to the cell are critical to achieve an optimized surface-modified quality BVA (Q-BVA) mode which provides the well defined reorientation of the LCs with respect to an electric field.

  • PDF

Highly Efficient Phosphorescent White Organic Light-Emitting Devices with a Poly(N-vinylcarbazole) Host Layer

  • Kang, Min-Ki;Moon, Dae-Gyu
    • Transactions on Electrical and Electronic Materials
    • /
    • v.12 no.2
    • /
    • pp.80-83
    • /
    • 2011
  • We have fabricated phosphorescent white organic light-emitting devices (WOLEDs) with a spin-coated poly(Nvinylcarbazole) [PVK] host layer. Iridium(III) bis[(4,6-difluorophenyl)-pyridinato-N,$C^{2'}$]picolinate (FIrpic), tris(2-phenylpyridine)iridium(III) [$Ir(ppy)_3$], and tris(2-phenyl-1-quinoline)iridium(III) [$Ir(phq)_3$], were used as the blue, green, and red guest materials, respectively. The PVK was mixed with FIrpic, $Ir(ppy)_3$, and $Ir(phq)_3$ molecules in a chlorobenzene solution and spin-coated in order to prepare the emission layer; 3-(4-biphenylyl)-4-phenyl-5-(4-tertbutylphenyl)-1,2,4-triazole (TAZ) was used as an electron transport material. The resultant device structure was ITO/PVK:FIrpic:$Ir(ppy)_3:Ir(phq)_3$/TAZ/LiF/Al. The electroluminescence, efficiency, and electrical conduction characteristics of the WOLEDs based on the doped PVK host layer were investigated. The maximum current efficiency of the three wavelength WOLED with the doped PVK host was 19.2 cd/A.

Improvement of external quantum efficiency of EL devices with PVK/P3DoDT blends using as a emitting layer (PVK/P3DoDT 블랜드를 발광층으로 사용한 EL 소자의 발광효율 향상에 관한 연구)

  • Kim, Ju-Seung;Seo, Bu-Wan;Gu, Hal-Bon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.04b
    • /
    • pp.96-99
    • /
    • 2000
  • We fabricated electroluminescent(EL) devices which have a blended single emitting layer containing poly(N-vinylcarbazole)[PVK] and poly(3-dodecylthiophene)[P3DoDT]. The molar ratio between P3DoDT and PVK changed with 1:0, 2:1 and 1:1. To improve the external quantum efficiency of EL devices, we applied insulating layer, LiF layer, between polymer emitting layer and Al electrode. All of the devices emit orange-red light and its can be explained that the energy transfer occurs from PVK to P3DoDT. In the voltage-current and voltage-light power characteristics of devices applied LiF layer, current and light power drastically increased with increasing applied voltage. In the consequence of the result, the external quantum efficiency of the devices that have a molar ratio 1:1 with LiF layer was 35 times larger than that of the device without LiF layer at 6V.

  • PDF