• Title/Summary/Keyword: Polymer Blends

Search Result 433, Processing Time 0.019 seconds

A research of thermoplastic elastomer PP(Poly Propylene)/SEBS(Styrene Ethylene Butylene Styrene) blends (열가소성 탄성중합체인 PP/SEBS 혼합 연구)

  • Han, Hyun Kak
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.8
    • /
    • pp.562-570
    • /
    • 2018
  • New physical properties of polymer materials were obtained by blending two or three different type of polymers. TPE is used widely in the display, automotive and electronics industries. Consumers have sought emotionally more sensitive and advanced interior automotive parts. A polymer with high foamibility (Ed note: Please check this.) and flowability would be more plausible. TPE composed of foam is a good polymer material to satisfy these trends. In this research, two different TPE were tested, focusing on foamibility and flowability. Two type of TPE were prepared. The first was blended Homo-PP, oil and SEBS. The second was Co-PP, oil and SEBS. The blending temperatures were $180^{\circ}C$, $190^{\circ}C$, and $260^{\circ}C$(second one). The blending speed was 50rpm and blending time was 5 min. The MI of the blended material was affected by the MI of PP and not affected by the blending temperature. The hardness and tensile elasticity were less affected by the MI of PP and blending temperature. The hardness and tensile elasticity were lower at a higher SEBS/Oil content ratio. The soft touch feel was higher with high SEBS/Oil contents. The IPN (Interpenentration polymer network) structure was observed by dissolving the SEBS/Oil layer in xylene. Strain-hardening phenomena also was observed. TPE behaves in a rubber and foamed closed-cell improved its stability.

Biocompatibility of Poly(MPC-co-EHMA)/Poly(L-1actide-co-glycolide) Blends

  • Gilson Khang;Park, Myoung-Kyu;Jong M. Rhee;Lee, Sang-Jin;Lee, Hai-Bang;Yasuhiko Iwasaki;Nobuo Nakabayashi;Kazuhiko Ishihara
    • Macromolecular Research
    • /
    • v.9 no.2
    • /
    • pp.107-115
    • /
    • 2001
  • Poly(L-lactide-co-glycolide)(PLGA) was blended with poly[$\omega$-methacryloyloxyethyl phospho-rylcholine-co-ethylhexylmethacrylate (PMEH)] (PLGA/PMEH) to endow with new functionality i.e., to improve the cell-, tissue- and blood-compatibility. The characteristics of surface properties were investigated by measurement of contact angle goniometer, Fourier-transform infrared spectroscopy with attenuated total reflectance (FTIR-ATR) and electron spectroscopy for chemical analysis (ESCA). NIH/3T3 fibroblast and bovine aortic endothelial cell were cultured on control and PLGA/PMEH surfaces for the evaluation of ceil attachment and proliferation in terms of surface functionality such as the concentration of phosphoryl-choline. Also, the behavior of platelet adhesion on PLGA/PMEH was observed in terms of the surface functionality. The contact angles on control and PLGA/PMEH surfaces decreased with increasing PMEH content from 75$^{\circ}$ to about 43$^{\circ}$. It was observed from the FTIR-ATR spectra that phosphorylcholine groups are gradually increased with increasing blended amount of MPC. The experimental P percent values from ESCA analysis were more 3.28∼7.4 times than that of the theoretical P percent for each blend films. These results clearly indicated that the MPC units were concentrated on the surface of PLGA/PMEH blend. The control and PLGA/PMEH films with 0.5 to 10.0 wt% concentration of PMEH were used to evaluate cell adhesion and growth in terms of phosphorylcholine functionality and wettability. Cell adhesion and growth on PLGA/PMEH surfaces were less active than those of control and both cell number decreased with increasing PMEH contents without the effect of surface wettability. It can be explained that the fibronectin adsorption decreased with an increase in the surface density of phosphorylcholine functional group. One can conclude the amount of the protein adsorption and the adhesion number of cells can be controlled and nonspecifically reduced by the introduction with phosphorylcholine group. Morphology of the adhered platelets on the PLGA/PMEH surface showed lower activating than control and the number of adhered platelets on the PLGA/PMEH sample decreased with increasing the phosphorylcholine contents. The amount of fibrinogen adsorbed on the PLGA/PMEH surface demonstrated that the phospholipid polar group played an important role in reducing protein adsorption on the surface. In conclusion, this surface modification technique might be effectively used PLGA film and scaffolds for controlling the adhesion and growth of cell and tissue, furthermore, blood compatibility of the PLGA was improved by blending of the MPC polymer for the application of tissue engineering fields.

  • PDF

Preparation of Polyether ether ketone[PEEK]/Heteropolyacid [HPA] Blends Membrane for Hydrogen production via Electrodialysis (PEEK/HPA를 이용한 수전해용 저온형 고체고분자 전해질막의 제조)

  • Lee, Hyuck-Jae;Jung, Yun-Kyo;Jang, In-Young;Hwang, Gab-Jin;Bae, Ki-Kwang;Sim, Kyu-Sung;Kang, An-Soo
    • Journal of Hydrogen and New Energy
    • /
    • v.16 no.1
    • /
    • pp.40-48
    • /
    • 2005
  • Until recently, only perfluorinated ionomer membrane such as Nation and Aciflex practically could be successfully used in water splitting. However, these membrane are limited by high cost and loss of membrane performance such as proton conductivity at elevated temperature above 80$^{\circ}C$. The sulfonated aromatic polymers such as PEEK and PSf, polyimides, and polybenzimidazoles are expected to have lower production cost as well as satisfactory chemical and electrochemical properties. HPAs and sulfonated polymers could have a significant influence on water electrolysis performance at elevated temperatures above 80$^{\circ}C$, but these phenomena have received relatively little attention until now. Therefore, it would be desirable to investigate the interrelation between the HPA and sulfonated polymer, such as SPEEK. The SPEEK membrane were prepared by the sulfonation of PEEK, and HPA was blended with SPEEK to increase the mechanical strength and electrochemical characteristics. As a results, electrochemical characteristics such as proton conductivity and ion exchange capacity were improved with the addion of 0.5 g HPA. And the properties of polymer electrolyte, SPEEK/HPA were better than Nation membrane at elevated temperature above 80$^{\circ}C$.

A Study on Fabrication of Polyester Copolymers (Ⅵ) -Physical Properties of PET/PETG Copolymer Blend by the Drawing Conditions- (폴리에스테르 공중합체의 Fabrication 연구 (Ⅵ) -PET/PETG 공중합체 블렌드의 연신조건에 따른 물리적 특성-)

  • 현은재;이소화;김기영;제갈영순;장상희
    • Polymer(Korea)
    • /
    • v.26 no.3
    • /
    • pp.335-343
    • /
    • 2002
  • Blend resin (PET/PETG 70/30 blend) of poly (ethylene terephthalate) (PET) and poly (ethylene terephthalate glycol) (PETG) of weight percent 70/30 was prepared by a twin-screw extruder. Undrawn films of the blend and pure PETG were made by melt-press in hot press. Drawn films were made by capillary rheometer. Crystallinity, shrinkage, thermal, dynamic mechanical, and mechanical properties of these blends and PETG drawn films were investigated by wide angle X-ray diffractometer, dry oven, DSC thermal analyzer, and tensile tester. The crystallinity and density of these films increased with increasing draw ratio and draw rate but decreased with increasing draw temperature. The crystallinity and density of the blend films were higher than those of PETG films. The tensile strength and tensile modulus of these drawn alms increased with increasing draw ratio and draw rate but decreased with increasing draw temperature. The tensile strength and tensile modulus of blend films were higher than those of PETG films. Shrinkage of PETG md blend films decreased with draw ratio and draw rate. Shrinkage of undrawn blend film was 600% higher than that of pure PET film.

Toughening of Epoxy Resin with PES-CTBN-PES Triblock Copolymers (PES-CTBN-PES 공중합체를 이용한 에폭시 수지의 강인성 향상 연구)

  • 김형륜;명범영;송경헌;육종일;윤태호
    • Polymer(Korea)
    • /
    • v.25 no.2
    • /
    • pp.246-253
    • /
    • 2001
  • Amino terminated PES-CTBN-PES triblock copolymer was synthesized from PES oligomer and commercial CTBN rubber (CTBN1300$\times$13), and molecular weight of the copolymer was controlled to be 15000 g/mole. The copolymer was utilized to toughen diglycidyl ether of bisphenol-A (DGEBA) epoxy resin which was cured with 4,4'-diaminodi-phenylsulfone (DDS) and subjected to the measurement of thermal properties, fracture toughness ( $K_{IC}$), flexural properties and solvent resistance. The properties were compared with those from the samples modified by CTBN/PES blends. The maximum loading of copolymer into the epoxy resin was 40 wt% without utilizing solvent, at which $K_{IC}$ fracture toughness of 2.21 MPa${\cdot}m^{0.5}$ was obtained without sacrificing flexural properties and chemical resistance. However, the epoxy resin modified with PES/CTBN blend exhibited much lower $K_{IC}$ and flexural properties compared to the epoxy resins toughened by PES-CTBN-PES copolymers.

  • PDF

Copolymerization and Characteristics of Styrene and Fluorine-Containing Acrylate (스티렌과 불소함유 아크릴레이트의 공중합 및 공중합체의 특성)

  • 김상신;이상원;허정림;허완수
    • Polymer(Korea)
    • /
    • v.26 no.1
    • /
    • pp.9-17
    • /
    • 2002
  • The free radical bulk copolymerizations of perfluoroalkylethyl acrylate(FA) containing perfluoro group ($CF_3(CF_2)_nCH_2CH_2$-; n=5, 7, 9, 11) with styrene were conducted at $60^{\circ}C$ using AIBN as an initiator. Reactivity ratios($r_1$, $r_2$) were determined from monomer feed compositions and the NMR spectroscopically measured copolymer compositions using Kelen-Tudos method. The structures of copolymers were characterized with FT-IR and $^1H-NMR$ analysis. Their thermal properties investigated with DSC and TGA were decreased with increasing the content of fluorinated acrylate in the copolymer. Their surface free energies were calculated with measuring contact angles of the copolymers and PMMA blends with a small amount of them.

Mechanical Properties of PVC Composite Containing Iron Dust (제철 분진을 함유한 PVC 복합체 수지의 기계적 성질)

  • Nah, Jae-Woon;Kim, Myung-Yul
    • Elastomers and Composites
    • /
    • v.33 no.5
    • /
    • pp.370-376
    • /
    • 1998
  • Mechanical properties of PVC[poly(vinylchloride)] composites containing the dust from blast and converter (Kwangyang Iron Co.) were investigated as a function of dust content. Tensile strength is increased, when the blast dust is mixed with PVC to the extent of 8.83wt % and impact strength is not significantly changed. From these results, it is suggested that blast dust containing CaO, SiO, MgO, $A1_2O_3$ and metallugical particle is compatible with PVC. Thermogravimetric analysis(TGA) showed that residual weight(%) at temperature $600^{\circ}C$ increased with the amount of blast dust and differential scanning calorimetry(DCS) showed that the thermal stability of PVC composite was increased when the weight ratio of blast dust was 8.83wt % X-ray diffractometry measurement also showed their blends and structures.

  • PDF

Electrical and Physical Properties of Magnetite-Filled NBR (마그네타이트가 충전된 NBR의 전기적 특성 및 물성 연구)

  • 최교창;이은경;최세영;박수진
    • Polymer(Korea)
    • /
    • v.27 no.1
    • /
    • pp.40-45
    • /
    • 2003
  • In this work, the effect of different contents of $Fe_3O_4$ and temperature variation on the electrical conductivity ($\sigma$) in the polar acrylonitrile butadiene rubber (NBR)/$Fe_3O_4$ (magnetite) mixture system was investigated. It was found that the percolation threshold concept holds true for the conductive particle-filled composites where $\sigma$ indicates a nearly sharp increase when the concentration of magnetite in the mixture exceeds 22%. The temperature dependence of $\sigma$ was thermally activated below and at the percolation threshold ($P_c$). Magnetite acted as reinforcing and conductive filler for NBR. At room temperature and higher voltages, the electrical current was proportional to the square of voltage ($I{\propto}V^2$) for the composites which contain 30 phr of magnetite. Moreover, it was shown that the composites with magnetite of 50 phr showed the highest tensile strength and elongation at break, which was due to the formation of optimal physical interlock and crosslinking. The results of 100%, 200%, and 300% Young moduli said that the moduli are largely correlated with reinforcement effect of magnetite and viscosity of the blends from torque curve.

Preparation and Properties of Poly(vinyl alcohol)/Chitosan Blend Films (폴리(비닐 알코올)/키토산 블렌드 필름의 제조 및 특성)

  • 정민기;김대선;최용혁;손태원;권오경;임학상
    • Polymer(Korea)
    • /
    • v.28 no.3
    • /
    • pp.253-262
    • /
    • 2004
  • Poly(vinyl alcohol)(PVA)/chitosan blend films with non-toxicity, biodegradability, and biocom-patibility were prepared by solution casting. Variation of the physicochemical properties of the blend films was investigated through to several analysis methods. Examination of antibacterial properties revealed that bacterio-static ratios of all blend samples containing chitosan more than 10 wt% were greater than 99.9%. Moisture regain was increased with increasing chitosan content but the degree of swelling was decreased. Up to chitosan content 15 wt%t, the melting and crystallization temperature of blend films was increased with chitosan content. The blends containing chitosan content 10 and 15 wt% gave melting temperature 229 and 228$^{\circ}C$, respectively. However, the melting temperature was decreased if chitosan content exceeded 20 wt%. The mechanical properties of the blend films were increased with increasing chitosan content in both dry and wet states. The blend film including 15 wt% chitosan exhibited unusually high tensile strength.

Effect of Composition of EVA-based Hot-Melt Adhesives on Adhesive Strength (EVA계 핫멜트 접착제의 조성이 접착력에 미치는 영향)

  • Lee, Jung-Joon;Song, Yu-Hyun;Lim, Sang-Kyun;Park, Dae-Soon;Sung, Ick-Kyung;Chin, In-Joo
    • Journal of Adhesion and Interface
    • /
    • v.11 no.4
    • /
    • pp.155-161
    • /
    • 2010
  • A series of ethylene vinyl acetate (EVA) based hot melt adhesives containing different types and compositions of tackifier resins were prepared to investigate their rheological behavior and T-peel adhesion strength on polyurethane (PU) elastomeric sheets. C5 aliphatic hydrocarbon resin (C5 resin), C9 aromatic hydrocarbon resin (C9 resin), hydrogenated dicyclopentadiene resin ($H_2$-DCPD resin), and dicyclopentadiene and acrylic monomer copolymer resin (DCPD-acrylic resin) were used as the tackifiers for the hot melt adhesives. To determine the polarity of the tackifiers, their oxygen contents were analyzed, and the DCPDacrylic resin was found to contain an oxygen content higher than the other tackifiers. Only the DCPD-acrylic resin showed complete miscibility with EVA and the homogeneous phase of the hot melt adhesive blends at all compositions. The T-peel adhesion strength between the hot melt adhesives and polyurethane elastomeric sheets was mainly affected by the polarity of the tackifier resins in the hot melt adhesives, rather than by the storage moduli, G', of the hot melt adhesives themselves.