Effect of Composition of EVA-based Hot-Melt Adhesives on Adhesive Strength

EVA계 핫멜트 접착제의 조성이 접착력에 미치는 영향

  • Lee, Jung-Joon (Department of Polymer Science and Engineering, Inha University) ;
  • Song, Yu-Hyun (Department of Polymer Science and Engineering, Inha University) ;
  • Lim, Sang-Kyun (Department of Polymer Science and Engineering, Inha University) ;
  • Park, Dae-Soon (R&D Center, Kolon Industries Inc.) ;
  • Sung, Ick-Kyung (R&D Center, Kolon Industries Inc.) ;
  • Chin, In-Joo (Department of Polymer Science and Engineering, Inha University)
  • 이정준 (인하대학교 고분자공학과) ;
  • 송유현 (인하대학교 고분자공학과) ;
  • 임상균 (인하대학교 고분자공학과) ;
  • 박대순 (코오롱인더스트리(주) 기술연구소) ;
  • 성익경 (코오롱인더스트리(주) 기술연구소) ;
  • 진인주 (인하대학교 고분자공학과)
  • Received : 2010.10.19
  • Accepted : 2010.11.26
  • Published : 2010.12.30

Abstract

A series of ethylene vinyl acetate (EVA) based hot melt adhesives containing different types and compositions of tackifier resins were prepared to investigate their rheological behavior and T-peel adhesion strength on polyurethane (PU) elastomeric sheets. C5 aliphatic hydrocarbon resin (C5 resin), C9 aromatic hydrocarbon resin (C9 resin), hydrogenated dicyclopentadiene resin ($H_2$-DCPD resin), and dicyclopentadiene and acrylic monomer copolymer resin (DCPD-acrylic resin) were used as the tackifiers for the hot melt adhesives. To determine the polarity of the tackifiers, their oxygen contents were analyzed, and the DCPDacrylic resin was found to contain an oxygen content higher than the other tackifiers. Only the DCPD-acrylic resin showed complete miscibility with EVA and the homogeneous phase of the hot melt adhesive blends at all compositions. The T-peel adhesion strength between the hot melt adhesives and polyurethane elastomeric sheets was mainly affected by the polarity of the tackifier resins in the hot melt adhesives, rather than by the storage moduli, G', of the hot melt adhesives themselves.

점착부여수지의 종류와 함량을 달리하여 에틸렌비닐아세테이트 공중합체(Ethylene Vinyl Acetate Copolymer, EVA)를 베이스 폴리머로 하는 핫멜트 접착제를 제조하고, 그것들의 유변학적 거동과 폴리우레탄 기재에 대한 T-peel 접착력을 평가하였다. C5 지방족 석유수지, C9 방향족 석유수지, 수소가 첨가된 디사이클로펜타디엔 석유수지 그리고, 디사이클로펜타디엔/아크릴 모노머 공중합 석유수지가 각각 핫멜트 접착제의 점착부여수지로 사용되었다. 점착부여수지의 산소 함량을 분석하여 점착부여수지의 극성도를 측정하였는데, 디사이클로펜타디엔/아크릴 모노머 공중합 석유수지가 다른 점착부여수지보다 산소 함량이 높은 것을 확인하였다. 디사이클로펜타디엔/아크릴 모노머 공중합 석유수지만이 EVA와 완전한 혼화성을 보였고, 핫멜트 접착제는 모든 조성에서 균일상을 나타내었다. 핫멜트 접착제와 폴리우레탄 기재와의 T-peel 접착력은 핫멜트 접착제 자체의 저장탄성계수(G')보다는 핫멜트 접착제에 첨가된 점착부여수지의 극성도에 의해서 좌우됨이 확인되었다.

Keywords

References

  1. A. T. Hu, R. S. Tsai, and Y. D. Lee, J. Appl. Polym. Sci., 37, 1863 (1989). https://doi.org/10.1002/app.1989.070370710
  2. L. D. Turreda, Y. Sekiguchi, M. Takemto, M. Kajiyama, Y. Hatano, and H. Mizumachi, J. Appl. Polym. Sci., 70, 409 (1998). https://doi.org/10.1002/(SICI)1097-4628(19981010)70:2<409::AID-APP22>3.0.CO;2-X
  3. K. I. Sunwoo and Y. H. Hovy, Polym. Sci. Technol., 6, 577 (1995).
  4. C. Rossitto, in Handbook of Adhesives, I. Skeist, Ed., pp. 478-498. Van Nostrand Reinhold, New York, NY (1990).
  5. E. F. Eastman and L. Fullhart, Jr., in Handbook of Adhesives, I. Skeist, Ed., Van Nostrand Reinhold, New York (1990).
  6. I. K. Sung, K. S. Kim, and I. J. Chin, Polymer J., 30, 181 (1998). https://doi.org/10.1295/polymj.30.181
  7. H. H. Shih and G. R. Hamed, J. Appl. Polym. Sci., 63, 323 (1997). https://doi.org/10.1002/(SICI)1097-4628(19970118)63:3<323::AID-APP7>3.0.CO;2-P
  8. H. Mizumachi, Y. Hatano, T. Kamei, Y. Yamagishi, and G. Mokuzai, Mokuzai Gakkaishi, 25, 288 (1979).
  9. Y. Hatano, B. Tomita, and H. Mizumachi, Holz forschung, 40, 255 (1986).
  10. L. D. Turreda, Y. Hatano, and H. Mizumachi, Holz forschung, 45, 371 (1991).
  11. L. D. Turreda, Y. Sekiguchi, M. Takemoto, M. Kajiyama, Y. Hatano, and H. J. Mizumachi, Appl. Polym. Sci., 70, 409 (1998). https://doi.org/10.1002/(SICI)1097-4628(19981010)70:2<409::AID-APP22>3.0.CO;2-X
  12. H. H. Shih and G. R. Hamed, J. Appl. Polym. Sci., 63, 333 (1997). https://doi.org/10.1002/(SICI)1097-4628(19970118)63:3<333::AID-APP8>3.0.CO;2-O
  13. W. W. Lim and H. Mizumachi, J. Appl. Polym. Sci., 66, 525 (1997). https://doi.org/10.1002/(SICI)1097-4628(19971017)66:3<525::AID-APP13>3.0.CO;2-U
  14. G. R. Hamed, Rubber Chem. Technol., 54, 576 (1983).
  15. H. Mizumachi, M. Tsukiji, Y. Konishi, and J. Tsujita, J. Adhesion Soc. Jpn., 12, 378 (1976).
  16. J. B. Class and S. G. Chu, J. Appl. Polym. Sci., 30, 805 (1985). https://doi.org/10.1002/app.1985.070300229
  17. J. B. Class and S. G. Chu, J. Appl. Polym. Sci., 30, 815 (1985). https://doi.org/10.1002/app.1985.070300230
  18. J. B. Class and S. G. Chu, J. Appl. Polym. Sci., 30, 825 (1985). https://doi.org/10.1002/app.1985.070300231
  19. M. Takemoto, M. Kajiyama, H. Mizumachi, A. Takemura, and H. Ono, J. Appl. Polym. Sci., 83, 726 (2002). https://doi.org/10.1002/app.2267
  20. Y. J. Park, H. J. Kim, M. Rafailovich, and J. Sokolov, J. Adhesion Sci. Technol., 17, 1831 (2003). https://doi.org/10.1163/156856103322538714
  21. M. Takemoto, M. Kajiyama, H. Mizumachi, A. Takemura, and H. Ono, J. Appl. Polym. Sci., 83, 719 (2002). https://doi.org/10.1002/app.2266
  22. G. Kraus and T. Hashimoto, J. Appl. Polym. Sci., 27, 1745 (1982). https://doi.org/10.1002/app.1982.070270531