Interfacial Evaluation of Single-Carbon Fiber/Phenolic and Carbon Nanotube-Phenolic Composites Using Micromechanical Tests and Electrical Resistance Measurements

미세역학시험법과 전기저항 측정을 이용한 탄소섬유/페놀수지 및 탄소나노튜브-페놀수지 복합재료의 계면특성 평가

  • Wang, Zuo-Jia (School of Materials Science and Engineering, Engineering Research Institute Gyeongsang National University) ;
  • Kwon, Dong-Jun (School of Materials Science and Engineering, Engineering Research Institute Gyeongsang National University) ;
  • Gu, Ga-Young (School of Materials Science and Engineering, Engineering Research Institute Gyeongsang National University) ;
  • Park, Jong-Kyoo (4-R&D Center, Agency for Defense Development) ;
  • Lee, Woo-Il (School of Mechanical and Aerospace Engineering, Seoul National University) ;
  • Park, Joung-Man (School of Materials Science and Engineering, Engineering Research Institute Gyeongsang National University)
  • 왕작가 (경상대학교 나노.신소재공학부, 공학연구원) ;
  • 권동준 (경상대학교 나노.신소재공학부, 공학연구원) ;
  • 구가영 (경상대학교 나노.신소재공학부, 공학연구원) ;
  • 박종규 (국방과학연구소 제4연구개발본부) ;
  • 이우일 (서울대학교 기계.항공공학부) ;
  • 박종만 (경상대학교 나노.신소재공학부, 공학연구원)
  • Received : 2010.09.01
  • Accepted : 2010.11.24
  • Published : 2010.12.30

Abstract

Interfacial evaluation was investigated for single-carbon fiber/phenolic and carbon nanotube (CNT)-phenolic composites by micromechanical technique and electrical resistance measurement combined with wettability test. Compressive strength of pure phenol and CNT-phenolic composites were compared using Broutman specimen. The contact resistance of CNT-phenolic composites was obtained using a gradient specimen by two and four-point methods. Surface energies and wettability by dynamic contact angle measurement were measured using Wilhelmy plate technique. Since hydrophobic domains are formed as heterogeneous microstructure of CNT in the surface, the dynamic contact angle exhibited more than $90^{\circ}$. CNT-phenolic composites exhibited a higher apparent modulus than neat phenolic case due to better stress transferring effect. Work of adhesion, $W_a$ between single-carbon fiber and CNT-phenolic composites exhibited higher than neat phenolic resin due to the enhanced viscosity by CNT addition. It was consistent with micro-failure patterns in microdroplet test.

단일 탄소섬유/페놀수지 및 탄소나노튜브-페놀수지 복합재료의 계면적 특성을 젖음성과 함께 전기저항 측정 및 미세역학시험법을 사용하여 평가하였다. 순수 페놀수지 및 탄소나노튜브-페놀수지 복합재료의 Broutman시편을 사용한 압축강도는 인장강도와 비교하였다. 탄소나노튜브-페놀수지 복합재료의 접촉저항은 2점 및 4점법에 의한 경사형 시편을 사용하여 측정하였다. 동적접촉각에 의한 표면에너지와 젖음성은 Wilhelmy 플레이트 법으로 측정하였다. 표면에서 탄소나노튜브가 불균일한 미세구조로 형성되므로, 동적접촉각은 90도 이상의 소수성을 나타내었다. 탄소나노튜브-페놀수지 복합재료는 보다 나은 응력전달 효과에 기인하여 순수 페놀수지보다 더 큰 겉보기 강성도를 보여주었다. 단일 탄소섬유와 탄소나노튜브-페놀수지 복합재료간의 접착일, $W_a$은 탄소나노튜브 첨가로 인한 점도 증가 때문에, 순수 페놀수지 보다 더 크게 나타났다. 이는 마이크로 풀 아웃 시험에서 단일 탄소섬유의 미세파손 형태와 일치함을 보여 주었다.

Keywords

References

  1. A. Y. Yavuz and S. Koparal, J. Hazard. Mater., 136, 296 (2006). https://doi.org/10.1016/j.jhazmat.2005.12.018
  2. X. Y. Li, Y. H. Cui, Y. J. Feng, Z. M. Xie, and J. D. Gu, Water Res., 39, 1972 (2005). https://doi.org/10.1016/j.watres.2005.02.021
  3. R. H. Carvalho, F. Lemos, M. Lemos, J. M. S. Cabral, and F. R. Ribeiro, J. Mol. Catal. A: Chem., 248, 48 (2006). https://doi.org/10.1016/j.molcata.2005.12.004
  4. S. S. Kim, D. C. Park, and D. G. Lee, Composite Structures, 66, 359 (2004). https://doi.org/10.1016/j.compstruct.2004.04.057
  5. O. Keiji, S. Tetsuro, and M. Hideki, International Journal of Fatigue, 28, 1290 (2006). https://doi.org/10.1016/j.ijfatigue.2006.02.026
  6. C. S. Luo and P. E. DesJardin, Composites Science and Technology, 67, 1475 (2007). https://doi.org/10.1016/j.compscitech.2006.07.030
  7. D. C. Park and D. G. Lee, Composite Structures, 70, 403 (2005). https://doi.org/10.1016/j.compstruct.2004.09.001
  8. A. Pegoretti and T. Ricco, Composites A, 33, 1539 (2002). https://doi.org/10.1016/S1359-835X(02)00112-4
  9. J. Tsai and C. Sun, Int. J. Sol. Str., 41, 3211 (2004). https://doi.org/10.1016/j.ijsolstr.2003.12.010
  10. K. Noda, A. Takahara, and T. Kajiyama, Polymer, 42, 5803 (2001). https://doi.org/10.1016/S0032-3861(00)00897-1
  11. R. Brighenti, Comp. Mater. Science, 29, 475 (2004). https://doi.org/10.1016/j.commatsci.2003.12.006
  12. Z. J. Wang, N. J. R. Gnidakoung, M. S. Kim, J. M. Park, and M. G. Um, Journal of Adhesion and Interface, 10, 162 (2009).
  13. R. Brighenti, Computational Materials Science, 29, 475 (2004). https://doi.org/10.1016/j.commatsci.2003.12.006
  14. Z. J. Wang, N. J. R. Gnidakoung, M. S. Kim, J. M. Park, and M. G. Um, Journal of Adhesion and Interface, 10, 162 (2009).
  15. J. M. Park, P. G. Kim, J. H. Jang, Z. J. Wang, J. W. Kim, W. I. Lee, J. G. Park, and K. L. DeVries, Composites: Part B, 39, 1170 (2008). https://doi.org/10.1016/j.compositesb.2008.03.004
  16. J. M. Park, Z. J. Wang, J. H. Jang, N. J. R. Gnidakoung, W. I. Lee, J. G. Park, and K. L. DeVries, Composites: Part A, 40, 1722 (2009). https://doi.org/10.1016/j.compositesa.2009.08.006
  17. J. M. Park, J. W. Kim, and D. J. Yoon, Composites Science and Technology, 62, 743 (2002). https://doi.org/10.1016/S0266-3538(02)00050-7
  18. J. M. Park, D. S. Kim, J. W. Kong, M. Y. Kim, W. H. Kim, and I. S. Park, J. Colloid and Interface Science, 249, 62 (2002). https://doi.org/10.1006/jcis.2002.8252