Preparation of Langmuir-Blodgett Film of Silica Coated Gold Nanoparticles

실리카 코팅 AuNPs의 Langmuir-Blodgett 박막 제조

  • Park, Minsung (Department of Biosystems and Biomaterials Science and Engineering, Seoul National University) ;
  • Choi, Jaeyoo (Department of Biosystems and Biomaterials Science and Engineering, Seoul National University) ;
  • Jung, Jaeyeon (Department of Biosystems and Biomaterials Science and Engineering, Seoul National University) ;
  • Cheng, Jie (Department of Biosystems and Biomaterials Science and Engineering, Seoul National University) ;
  • Hyun, Jinho (Department of Biosystems and Biomaterials Science and Engineering, Seoul National University)
  • 박민성 (서울대학교 바이오시스템.소재학부 바이오소재공학전공) ;
  • 최재유 (서울대학교 바이오시스템.소재학부 바이오소재공학전공) ;
  • 정재연 (서울대학교 바이오시스템.소재학부 바이오소재공학전공) ;
  • 정걸 (서울대학교 바이오시스템.소재학부 바이오소재공학전공) ;
  • 현진호 (서울대학교 바이오시스템.소재학부 바이오소재공학전공)
  • Received : 2010.09.28
  • Accepted : 2010.11.16
  • Published : 2010.12.30

Abstract

It reports the surface modification of gold nanoparticles (AuNPs) by the synthesis of thin silica layer and the fabrication of AuNPs monolayer on the glass surface. AuNPs of 10 nm in diameter were prepared in aqueous solution. A silica layer was synthesized at the different concentration of tetraethlyorthosilicate for the control of silica layer thickness. Langmuir-Blodgett (LB) film was fabricated by dispersing AuNPs on the aqueous solution and raising a surface pressure up to a solid phase. The change of AuNPs' size was observed by the change of UV/Visible spectra. Atomic force microscopic images confirmed the reliable fabrication of AuNPs LB films.

본 연구에서는 플라즈몬 공명 신호 증폭을 위한 AuNPs의 실리카 표면 개질 및 나노 입자의 안정적인 표면 박막 형성을 목표로 하였다. 직경 10 nm의 AuNPs를 수용액 상에서 제조하였으며, AuNPs 표면에 실리카 층을 단계별로 형성시켰다. Tetraethlyorthosilicate 농도를 조절함으로써 실리카 박막 두께를 조절하였으며, 얻어진 나노 입자들을 수용액 표면에 분산시켜 Langmuir-Blodgett 박막을 제조하였다. 흡광스펙트럼의 변화를 관찰함으로써 AuNPs의 크기 변화를 확인하였으며, 원자 힘 현미경으로 LB 박막의 형성 여부와 표면 균일도를 살펴보았다.

Keywords

References

  1. C. M. Niemeyer and U. Simon, European Journal of Inorganic Chemistry, 3641 (2005).
  2. C. Li, C. L. Wu, J. S. Zheng, J. P. Lai, C. L. Zhang, and Y. B. Zhao, Langmuir, 26, 9130 (2010). https://doi.org/10.1021/la101285r
  3. T. H. Lee, S. W. Lee, J. A. Jung, J. Ahn, M. G. Kim, and Y. B. Shin, Sensors, 10, 2045 (2010). https://doi.org/10.3390/s100302045
  4. J. Cabaj, J. Soloducho, and A. Nowakowska-Oleksy, Sensors and Actuators B-Chemical, 143, 508 (2010). https://doi.org/10.1016/j.snb.2009.09.047
  5. C. L. Wu and Q. H. Xu, Langmuir, 25, 9441 (2009). https://doi.org/10.1021/la900646n
  6. X. Li, L. Jiang, Q. Q. Zhan, J. Qian, and S. L. He, Colloids and Surfaces a-Physicochemical and Engineering Aspects, 332, 172 (2009). https://doi.org/10.1016/j.colsurfa.2008.09.009
  7. B. Wu and Q. K. Wang, Chinese Optics Letters, 6, 323 (2008). https://doi.org/10.3788/COL20080605.0323
  8. Y. Z. Zhang, J. Wang, and M. L. Xu, Colloids and Surfaces B-Biointerfaces, 75, 179 (2010). https://doi.org/10.1016/j.colsurfb.2009.08.030
  9. B. Sepulveda, P. C. Angelome, L. M. Lechuga, and L. M. Liz-Marzan, Nano Today, 4, 244 (2009). https://doi.org/10.1016/j.nantod.2009.04.001
  10. R. Gehlot, K. Sharma, M. Mathew, and S. Kumbhat, Indian Journal of Chemistry Section a-Inorganic Bio-Inorganic Physical Theoretical & Analytical Chemistry, 47, 1804 (2008).
  11. H. Baida, P. Billaud, S. Marhaba, D. Christofilos, E. Cottancin, A. Crut, J. Lerme, P. Maioli, M. Pellarin, M. Broyer, N. Del Fatti, and F. Vallee, Nano Letters, 9, 3463 (2009). https://doi.org/10.1021/nl901672b
  12. N. Nath and A. Chilkoti, Journal of Fluorescence, 14, 377 (2004). https://doi.org/10.1023/B:JOFL.0000031819.45448.dc
  13. N. Nath and A. Chilkoti, Analytical Chemistry, 76, 5370 (2004). https://doi.org/10.1021/ac049741z
  14. Z. Matharu, P. Pandey, M. K. Pandey, V. Gupta, and B. D. Malhotra, Electroanalysis, 21, 1587 (2009). https://doi.org/10.1002/elan.200904578
  15. S. T. Selvan, T. T. Y. Tan, D. K. Yi, and N. R. Jana, Langmuir, 26, 11631 (2010). https://doi.org/10.1021/la903512m
  16. S. K. Sharma, R. Singhal, B. D. Malhotra, N. Sehgal, and A. Kumar, Electrochimica Acta, 49, 2479 (2004). https://doi.org/10.1016/j.electacta.2004.01.024
  17. N. L. Rosi and C. A. Mirkin, Chemical Reviews, 105, 1547 (2005). https://doi.org/10.1021/cr030067f
  18. S. H. Liu, Z. H. Zhang, Y. B. Wang, F. K. Wang, and M. Y. Han, Talanta, 67, 456 (2005). https://doi.org/10.1016/j.talanta.2005.06.020
  19. E. Mine, A. Yamada, Y. Kobayashi, M. Konno, and L. M. Liz-Marzan, Journal of Colloid and Interface Science, 264, 385 (2003). https://doi.org/10.1016/S0021-9797(03)00422-3
  20. L. M. Liz Marzan, M. Giersig, and P. Mulvaney, Langmuir, 12, 4329 (1996). https://doi.org/10.1021/la9601871