• Title/Summary/Keyword: Polymer Binder

Search Result 363, Processing Time 0.027 seconds

Influence of Calcium on the Formation of Aluminosilicate Inorganic Polymer Binder

  • Ahn, Sangwook;Choi, Youngkue;Shin, Byeongkil;Lee, Jungwoo;Lee, Heesoo;Hui, Kwunnam
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.5
    • /
    • pp.362-366
    • /
    • 2011
  • Aluminosilicate inorganic polymer binder has been studied as an alternative to ordinary Portland cement due to its higher physical properties, chemical resistance and thermal resistance. This study has been carried out in an attempt to understand the hardening characteristics of aluminosilicate binder by varying the content of calcium. Samples with four different ratios of Al, Si, and Ca were synthesized in this study with the Al:Si:Ca mol ratio being 1.00:1.85~1.98:0.29~2.12. Furthermore, an alkali silicate solution was prepared with the sodium hydroxide (NaOH) and sodium silicate (NaSi). The hardening characteristics of the specimens were analyzed using XRD, SEM, and TG/DTA. In addition, compressive strength and sintering time of specimens were measured as a function of calcium content. The results showed that the specimen containing 2.12 mol% calcium offered the highest compressive strength. However, the compressive strength of the specimen containing 0.26 mol% calcium was lower relative to the other specimens. The results displayed a distinct tendency that as more calcium was added to the inorganic polymer, setting time became shorter. When calcium was added to the inorganic polymer structure, a second phase was not formed, indicating that the addition of calcium does not affect the crystalline structure.

Exploring the Flexural Bond Strength of Polymer-Cement Composition in Crack Repair Applications (균열 보수용 폴리머 시멘트 복합체의 휨접착강도에 관한 연구)

  • Jo, Young-Kug
    • Journal of the Korea Institute of Building Construction
    • /
    • v.24 no.1
    • /
    • pp.23-34
    • /
    • 2024
  • This research aims to assess the flexural bonding efficacy of polymer-cement composites(PCCs) in mending cracks within reinforced concrete(RC) structures. The study involved infilling PCCs into cement mortar cracks of varying dimensions, followed by evaluations of enhancements in flexural adhesion and strength. The findings indicate that the flexural bond performance of PCCs in crack repair is influenced by the cement type, polymer dispersion, and the polymer-to-binder ratio. Specifically, the use of ultra-high early strength cement combined with silica fume resulted in an up to 19.0% improvement in flexural bond strength compared to the application of ordinary Portland cement with silica fume. It was observed that the augmentation in flexural strength of cement mortar filled with PCCs was significantly more dependent on the depth of the crack rather than the width. Furthermore, PCCs not only acted as repair agents but also as reinforcement materials, enhancing the flexural strength to a certain extent. Consequently, this study concludes that PCCs formulated with ultra-high early strength cement, various polymer dispersions, silica fume, and a high polymer-to-binder ratio ranging from 60% to 80% are highly effective as maintenance materials for crack filling in practical settings.

Physical Properties of Environment-friendly Insulating Composite Materials Using Natural Cellulose as a Core Material (천연섬유질을 심재로 사용한 친환경 복합단열재의 물성)

  • Hwang, Eui-Hwan;Cho, Soung-Jun;Kim, Jin-Man
    • Korean Chemical Engineering Research
    • /
    • v.49 no.1
    • /
    • pp.120-127
    • /
    • 2011
  • For the development of the environment-friendly insulating composite materials, natural cellulose (wood chip and sawdust) was used as a core material and activated Hwangtoh was used as a binder. Various specimens were prepared with the water/binder ratio and natural cellulose/binder ratio. The physical properties of these specimens were then investigated through compressive and flexural strength test, absorption test, hot water resistance test, thermal conductivity, measurement of pore distribution and observation of micro-structures using scanning electron microscope (SEM). Results showed that the absorption ratio increased with the increase of natural cellulose/binder ratio but decreased remarkably with the increase of polymer/binder ratio. The compressive and flexural strength development varied appreciably with the increase of water/binder ratio and natural cellulose/binder ratio. On the other hand, thermal conductivity decreased with the increase of natural cellulose/binder ratio and polymer/binder ratio. Through SEM, it was found that activated Hwangtoh that reacted with water formed a hydrate crystal leading to the compact structure and the total pore volume of the specimen using activated Hwangtoh was smaller than that of the non-activated Hwangtoh.

Ionomer Binder in Catalyst Layer for Polymer Electrolyte Membrane Fuel Cell and Water Electrolysis: An Updated Review (고분자 전해질 연료전지 및 수전해용 촉매층의 이오노머 바인더)

  • Park, Jong-Hyeok;Akter, Mahamuda;Kim, Beom-Seok;Jeong, Dahye;Lee, Minyoung;Shin, Jiyun;Park, Jin-Soo
    • Journal of the Korean Electrochemical Society
    • /
    • v.25 no.4
    • /
    • pp.174-183
    • /
    • 2022
  • Polymer electrolyte fuel cells and water electrolysis are attracting attention in terms of high energy density and high purity hydrogen production. The catalyst layer for the polymer electrolyte fuel cell and water electrolysis is a porous electrode composed of a precious metal-based electrocatalyst and an ionomer binder. Among them, the ionomer binder plays an important role in the formation of a three-dimensional network for ion conduction in the catalyst layer and the formation of pores for the movement of materials required or generated for the electrode reaction. In terms of the use of commercial perfluorinated ionomers, the content of the ionomer, the physical properties of the ionomer, and the type of the dispersing solvent system greatly determine the performance and durability of the catalyst layer. Until now, many studies have been reported on the method of using an ionomer for the catalyst layer for polymer electrolyte fuel cells. This review summarizes the research results on the use of ionomer binders in the fuel cell aspect reported so far, and aims to provide useful information for the research on the ionomer binder for the catalyst layer, which is one of the key elements of polymer electrolyte water electrolysis to accelerate the hydrogen economy era.

Investigation on Rubbing Fastness of Pigment Ink with Polymer Binders having Various Comonomer Compositions (바인더 단량체 조성 변화에 따른 안료 잉크의 마찰견뢰도 연구)

  • Han, Minwoo;Kwon, Woong;Jeong, Euigyung;Bae, Jin-Seok
    • Textile Coloration and Finishing
    • /
    • v.31 no.2
    • /
    • pp.77-87
    • /
    • 2019
  • To improve rubbing fastness of the printed fabrics, the binder polymers for Digital Textile Printing(DTP) pigment inks were synthesized with miniemulsion polymerization using various acrylic monomers, which are MMA(Methyl methacrylate), BA(Butyl acrylate), and Self-crosslinking monomers, such as NEA(N-Ethylol acrylamide) and MAA (Methacrylic acid). The acrylic monomer compositions were varied when synthesizing the binder polymers and their particle size distributions, average molecular weights, and Tgs were investigated. The prepared binder polymers were applied to prepare Cyan, Black, Yellow and Magenta pigment ink for DTP and the prepared inks were used to dye cotton fabrics. Then, color strength, and rubbing fastness were also investigated to study the effect of the comonomer compositions of the binder polymer on the color strength and rubbing fastness of the resulting pigment inks.

Microstructure Properties of High Strength Concrete Utilizing EVA with Micro Particles (EVA 마이크로 입자를 활용한 고강도 콘크리트의 미세구조특성)

  • Kim, Young-Ik;Sung, Chan-Yong
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2005.10a
    • /
    • pp.97-101
    • /
    • 2005
  • High strength concretes utilizing EVA with micro particles were prepared by varying polymer/binder mass ratio and curing conditions with a constant water/binder mass ratio of 0.3. The EVA modified concretes on the compressive and flexural strength, microstructure, ultrapulse modulus in curing condition(dry and water curing) were studied. Also, scanning electron microscope analysis(SEM) was performed to reveal the presence of polymer film and cement hydrates in the concrete. The compressive strength of the EVA modified concretes cured at water conditions ere higher than that of the EVA modified concretes cured at dry conditions. But, the flexural strength of the specimens cured at dry conditions were higher than that of the specimens cured at water conditions. Due to the interaction of the cement hydrates and polymer film, an interpenetrating network originated in which the aggregates were embedded. The curing of the polymer modified concrete involves two step of cement hydrates and polymer modification, and cement hydrates was promoted in water conditions and polymer film formation take place when water evaporates and was thereby was favored in dry conditions. By SEM analysis, influences of polymer modification was strengthening of the transition zone between the aggregate and the paste, and the porosity of transition zone decreases. By spring analysis, it could known that polymer film affects in porosity decrease and strengthening of transition zone.

  • PDF

Research on Characteristics of Multifunctional Soil Binder Based on Polyacrylamide (폴리아크릴아마이드를 기반으로 하는 다기능성 토양안정제의 특성에 관한 연구)

  • Kim, Jin Kyung;Kim, Dae Ho;Joo, Sang Hyun;Lee, Myung Cheon
    • Applied Chemistry for Engineering
    • /
    • v.29 no.2
    • /
    • pp.155-161
    • /
    • 2018
  • For the efficient recovering of collapsed sloped soil, using a soil binder that can support the soil strongly and help the growth of plants is very important. The soil binder should also have functions of recovering the soil ecologically as well as be environmental friendly materials. In this research, optimum values of the water content and permeability and direct shear strength were searched by adding the water absorbent and coagulant into the soil binder. The polyacrylamide (PAM) with various anionic strength, super absorbent polymer (SAP) and cellulose ether (CE) were used as a soil binder, water absorbent and coagulant, respectively. Effects of the soil binder on the characteristics of soil were observed by changing the mixing ratio of PAM, SAP and CE. Experimental results showed that the soil binder increased the direct shear strength tens of times and the water content around two times, whereas decreased the water permeability. Also, the addition of CE to increase the coagulation of SAP increased more of the direct shear strength and water content.

Strength Properties of Epoxy-Modified Mortars with Expansive and Swelling Agents (팽창재 및 팽윤재를 병용한 에폭시수지 혼입 시멘트 모르타르의 강도특성)

  • Ham, Seong-Min;Kim, Joo-Young;Kim, Wan-Ki
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.05a
    • /
    • pp.288-289
    • /
    • 2014
  • The purpose of this research is to examine strength properties of epoxy-modified mortar with expansive and swelling agent contents. The polymer-modified mortars (PMMs) using epoxy resin are prepared with various polymer-binder ratios, expansive and swelling agent contents. The PMMs using epoxy resin are tested for compressive, flexural and tensile strengths. As a result, the strength properties of the PMMs using epoxy resin are depending on the polymer-binder ratio rather than expansive and swelling agent content, and are remarkably improved over unmodified mortar (UMM).

  • PDF

Strenghts and Hardening Properties of Epoxy-modififed Mortars Using Wood-Tar of Wood By-Product (목재 부산물인 목타르를 활용한 에폭시수지 혼입 PMM의 강도 및 경화특성)

  • Kim, Joo-Young;Ham, Seong-Min;Kim, Wan-Ki
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.11a
    • /
    • pp.21-22
    • /
    • 2014
  • The purpose of this study is to ascertain strengths and hardening rate of epoxy-modified mortar with wood-tar contents. The polymer-modified mortars (PMMs) using epoxy resin with wood-tar are prepared with various polymer-binder ratios of 1, 3, 5% and wood-tar contents of 0, 5, 10, 15 and 20%. The PMMs using epoxy resin are tested for compressive, flexural and tensile strengths and hardening rate of epoxy resin. As a result, the strengths and hardening rate under polymer-binder ratio 1% and wood-tar content of 5% are more excellent than those of other specimens.

  • PDF

Development of Water-Permeable Polymer Concrete for Pavement (투수성 포장 폴리머 콘크리트의 개발)

  • 이윤수;주명기;연규석
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.147-152
    • /
    • 2001
  • The purpose of this study is to ascertain the strength properties of water-permeable polymer concretes with SBR latex and redispersible polymer powder. The water-permeable polymer concretes using SBR latex and redispersible polymer powder with water-binder ratio of 29%, polymer-cement ratios of 0, 5, 10, 15 and 20% are prepared, and tested for compressive strength, tensile strength, flexural strength, water permeability. From the test results, improvements in the strength properties of the water-permeable polymer concretes due to the addition of the SBR latex and redispersible polymer powder are discussed.

  • PDF