DOI QR코드

DOI QR Code

Physical Properties of Environment-friendly Insulating Composite Materials Using Natural Cellulose as a Core Material

천연섬유질을 심재로 사용한 친환경 복합단열재의 물성

  • Hwang, Eui-Hwan (Department of Chemical Engineering, Kongju National University) ;
  • Cho, Soung-Jun (Department of Chemical Engineering, Kongju National University) ;
  • Kim, Jin-Man (Department of Architecture, Kongju National University)
  • Published : 2011.01.30

Abstract

For the development of the environment-friendly insulating composite materials, natural cellulose (wood chip and sawdust) was used as a core material and activated Hwangtoh was used as a binder. Various specimens were prepared with the water/binder ratio and natural cellulose/binder ratio. The physical properties of these specimens were then investigated through compressive and flexural strength test, absorption test, hot water resistance test, thermal conductivity, measurement of pore distribution and observation of micro-structures using scanning electron microscope (SEM). Results showed that the absorption ratio increased with the increase of natural cellulose/binder ratio but decreased remarkably with the increase of polymer/binder ratio. The compressive and flexural strength development varied appreciably with the increase of water/binder ratio and natural cellulose/binder ratio. On the other hand, thermal conductivity decreased with the increase of natural cellulose/binder ratio and polymer/binder ratio. Through SEM, it was found that activated Hwangtoh that reacted with water formed a hydrate crystal leading to the compact structure and the total pore volume of the specimen using activated Hwangtoh was smaller than that of the non-activated Hwangtoh.

친환경 복합단열재를 개발하기 위하여 천연섬유질(목재칩 및 톱밥)을 심재로, 활성황토를 결합재로 사용하였다. 물/결합재비 및 천연섬유질/결합재비를 다양하게 변화시켜 공시체를 제작하였으며, 공시체의 제 물성을 조사하기 위하여 압축 및 휨강도, 흡수성, 내열수성, 열전도도, 세공분포측정 및 SEM에 의한 미세조직 관찰을 실시하였다. 그 결과 흡수율은 천연섬유질/결합재비가 증가될수록 증가되었으나 폴리머/결합재비 증가에 따라 현저히 감소되었다. 압축 및 휨강도는 물/결합재비 및 천연섬유질/결합재비에 따라 다양한 특성을 나타내었다. 천연섬유질/결합재비 및 폴리머/결합재비가 증가됨에 따라 열전도도는 감소되었다. SEM조사에서 활성황토 결합재는 수화결정체가 잘 형성되어 치밀한 조직을 관찰할 수 있었고, 활성황토를 결합재로 사용한 시편의 총세공량은 생황토를 결합재로 사용한 시편의 총세공량에 비하여 적게 나타났다.

Keywords

References

  1. Kwon, Y. C., Yu, H. K. and Rhee, E. K., "A Study on the Thermal Conductivity of Environment-friendly Cellulose Insulation," Proceeding of Architectural Institute of Korea, 23(1), 601-604 (2003).
  2. Liang, H. H. and Ho, M. C., "Toxicity Characteristics of Commercially Manufactured Insulation Materials for Building Applications in Taiwan," Constr. Build. Mater., 21, 1254-1261(2007). https://doi.org/10.1016/j.conbuildmat.2006.05.051
  3. Kim, D. K. and Lee, S. B., "Properties and Thermal Characteristics of Phenol foam for Heat Insulating Materials," J. Korean Ind. Eng. Chem., 17(4), 357-360(2006).
  4. Jeong, J. H., Kim, J. U. and Jeong, J. G., "Thermal and Sound Insulation Properties of Sandwich Panel Filled with Inorganic Core Materials," J. Korean Soc. living environ. sys. 13(4), 320-326(2006).
  5. Rim, K. A., Ledhem, A., Douzane, O., Dheilly, R. M. and Queneudec, M., "Influence of the Proportion of Wood on the Thermal and Mechanical Performances of Clay-cement-wood Composites," Cem. Concr. Compos., 21, 269-276(1999). https://doi.org/10.1016/S0958-9465(99)00008-6
  6. Khedari, J., Suttisonk, B., Pratinthong, N. and Hirunlabh, J., "New Lightweight Composite Construction Materials with Low Thermal Conductivity," Cem. Concr. Compos., 23, 65-70(2001). https://doi.org/10.1016/S0958-9465(00)00072-X
  7. Bouguerra, A., Ledhem, A., de Barquin, F., Dheilly, R. M. and Queneudec, M., "Effedt of Microstructure on the Mechanical and Thermal Properties of Lightweight Concrete Prepared from Clay, Cement and Wood Aggregates," Cem. Concr. Res., 28(8), 1179-1190(1998). https://doi.org/10.1016/S0008-8846(98)00075-1
  8. Vrana, T. and Gudmundsson, K., "Comparison of Fibrous Insulations Cellulose and Stone Wool in Terms of Moisture Properties Resulting from Condensation and Ice Formation," Constr. Build. Mater., 24, 1151-1157(2010). https://doi.org/10.1016/j.conbuildmat.2009.12.026
  9. Binici, H., Aksogan, O., Bbodur, M. N., Akca, E. and Kapur, S., "Thermal Isolation and Mechanical Properties of Fibre Reinforced Mud Bricks as Wall Materials," Constr. Build. Mater., 21, 901-906(2007). https://doi.org/10.1016/j.conbuildmat.2005.11.004
  10. Coatanlem, P., Jauberthie, R. and Rendell, F., "Lightweight Wood Chipping Concrete Durability," Constr. Build. Mater., 20, 776-781 (2006). https://doi.org/10.1016/j.conbuildmat.2005.01.057
  11. Kruger, E. L., Adriazola, M., Matoski, A. and Iwakiri, S., "Thermal Analysis of Wood-cement Panels," Constr. Build. Mater., 23, 2299-2305(2009). https://doi.org/10.1016/j.conbuildmat.2008.11.010
  12. Bederina, M., Laidoudi, B., Goullieux, A., Khenfer, M. M., Bali, A. and Queneudec, M., "Effect of the Treatment of Wood Shavings on the Physico-mechanical Characteristics of Wood Sand Concretes," Constr. Build. Mater., 23, 1311-1315 (2009). https://doi.org/10.1016/j.conbuildmat.2008.07.029
  13. Bederina, M., Marmoret, L., Mezreb, K., Khenfer, M. M., Bali, A. and Queneudec, M., "Effect of the Addition of Wood Shavings on Thermal Conductivity of Sand Concretes," Constr. Build. Mater., 21, 662-668(2007). https://doi.org/10.1016/j.conbuildmat.2005.12.008
  14. Ledhem, A., Dheilly, R. M., Benmalek, M. L. and Queneudec, M., "Properties of Wood-based Composites Formulated with Aggregate Industry Waste," Constr. Build. Mater., 14, 341-350(2000). https://doi.org/10.1016/S0950-0618(00)00037-4
  15. Asasutjarit, C., Hirunlabh, J., Khedari, J., Charoenvai, S., Zeghmati, B. and Shin, U. C., "Development of Coconut Coir-based Lightweight Cement Board," Constr. Build. Mater., 21, 277-288 (2007). https://doi.org/10.1016/j.conbuildmat.2005.08.028
  16. Gunasekaran, K., Kumar, P. S. and Lakshmipathy, M., "Mechanical and Bond Properties of Coconut Shell Concrete," Constr. Build. Mater., 25, 92-98(2011). https://doi.org/10.1016/j.conbuildmat.2010.06.053
  17. Karade, S. R., "Cement-bonded Composites from Lignocellulosic Waste", Constr. Build. Mater., 24, 1323-1330(2010). https://doi.org/10.1016/j.conbuildmat.2010.02.003
  18. Mathur, V. K., "Composites Materials from Local Resources," Constr. Build. Mater., 20, 470-477(2006). https://doi.org/10.1016/j.conbuildmat.2005.01.031
  19. Lee, S. H., "Effect of Foaming Agent on the Continuous Voids in Lightweight Cellular Concrete", J. Korea Concrete Institute, 14(5), 742-749(2002). https://doi.org/10.4334/JKCI.2002.14.5.742
  20. Lee, S. A., Jung, C. W., Kim, W. J. and Ahn, J. H., "Optimized Mixing Design of Lightweight Aerated Concrete by Response Surface Analysis, " J. Korea Concrete Institute, 21(6), 745-752(2009). https://doi.org/10.4334/JKCI.2009.21.6.745
  21. Jones, M. R. and McCarthy, A., "Heat of Hydration in Foamed Concrete", Cem. Concr. Res., 36, 1032-1041(2006). https://doi.org/10.1016/j.cemconres.2006.01.011
  22. Goual, M. S., Bali, A., de Barquin, F., Dheilly, R. M. and Queneudec, M., "Isothermal Moisture Properties of Clayey Concretes Elaborated from Clayey Waste, Cement and Aluminium Powder," Cem. Concr. Res., 36, 1768-1776(2006). https://doi.org/10.1016/j.cemconres.2005.12.017
  23. Narayanan, N. and Ramamurthy, K., "Structure and Properties of Aerated Concrete," Cem. Concr. Compos., 22, 321-329(2000). https://doi.org/10.1016/S0958-9465(00)00016-0
  24. Aamr-Daya, E., Langlet, T., Benazzouk, A. and Queneudec, M., "Feasibility Study of Lightweight Cement Composite Containing Flax By-product Particles," Cem. Concr. Compos., 30, 957-963(2008). https://doi.org/10.1016/j.cemconcomp.2008.06.002
  25. Byun, K. J., Song, H. W. and Park, S. S., "Development of Structural Lightweight Foamed Concrete Using Polymer foam Agent," International Conference on Polymers in Concrete, 99-106, Bologna, Italy(1998).
  26. Binici, H., Aksogan, O., Bakbak, D., Kaplan, H. and Isik, B., "Sound Insulation of Fibre Reinforced Mud Brick Walls," Constr. Build. Mater., 23, 1035-1041(2009). https://doi.org/10.1016/j.conbuildmat.2008.05.008
  27. Kang, S. S., Lee, S. L., Hwang, H. Z. and Cho, M. C., "Hydration Heat and Shrinkage of Concrete Using Hwangtoh Binder," J. Korea Concrete Institute, 20(5), 549-555(2008). https://doi.org/10.4334/JKCI.2008.20.5.549
  28. Choi, H. Y., Kim, M. H., Kim, M. H., Hwang, H. Z. and Choi, S. W., "Experimental Study on the Properties of Concrete by the Kinds of Admixture and the Replacement Ratios of Activated Hwangtoh," J. Korea Concrete Institute, 13(2), 123-129(2001).
  29. Kim, S. B., Nam, J. W., Yi, N. H., Kim, J. H. and Choi, H. S., "Flexural Behavior of Hwangtoh Concrete Beams with Recycled PET Fiber," J. Korea Concrete Institute, 20(5), 619-626 (2008). https://doi.org/10.4334/JKCI.2008.20.5.619
  30. Torres, M. L. and Garcia-Ruiz, P. A., "Lightweight Pozzolanic Materials Used in Mortars," Cem. Concr. Compos., 31, 114-119 (2009). https://doi.org/10.1016/j.cemconcomp.2008.11.003
  31. Satoh, T., Ohama, Y. and Demura, K., "Water Resistance and Hot Water Resistance of Polymer Modified Mortars Containing FRP Powder," Summary of Technical Papers of Architectural Institute of Japan, 137(1994).
  32. Evbuomwan, N. F. O., "A State of the Art Report on the Strength and Durability Properties of Polymer Modified Mortars and Concrete," International Conference on Polymers in Concrete, 52, Shanghai, China(1990).
  33. Hwang, E. H., Ko, Y. S., Kim, J. M. and Hwang, T. S., "Mechanical/physical Characteristics of Polymer Mortar Recycled from Rapid-chilled Steel Slag," J. Ind. Eng. Chem. 15, 628-634(2009). https://doi.org/10.1016/j.jiec.2009.09.033