• 제목/요약/키워드: Polyethylene terephthalate

검색결과 395건 처리시간 0.024초

EVA와 PET 혼합(混合) 폐플라스틱의 재질분리(材質分離)를 위한 마찰하전형(摩擦荷電形) 정전선별(靜電選別) 기술개발(技術開發) (Development of Triboelectrostatic Separation Technique for Material Separation of EVA & PET Mixture Plastic Wastes)

  • 전호석;박철현;백상호;김병곤;김형석
    • 자원리싸이클링
    • /
    • 제18권1호
    • /
    • pp.13-21
    • /
    • 2009
  • 본 연구에서는 마찰하전형정전선별법을 적용하여 EVA(ethylene vinyl acetate)와 PET(polyethylene terephthalate) 혼합 폐플라스틱의 재활용을 위한 재질분리 연구를 수행하였다. 하전물질 선정을 위한 하전특성 연구결과, PP(polypropylene)재질이 EV4와 PET 폐플라스틱의 재질분리에 가장 효과적인 하전물질로 확인되어, PP재질의 pipe-type 하전장치를 개발하였다. 본 연구에서 개발된 하전장치를 이용한 재질분리 실험결과, 최적 실험조건에서 PET의 품위와 회수율이 각각 98.7%와 89.7%인 결과를 얻었다.

스퍼터링을 이용한 ITO 박막의 저온 증착

  • 장승현;이영민;양지훈;정재인
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2009년도 제38회 동계학술대회 초록집
    • /
    • pp.263-263
    • /
    • 2010
  • 투명도전막(indium tin oxide; ITO)은 투명하면서도 전기 전도도가 높기 때문에, 액정표시소자(LCD; Liquid Crystal Display), 전자발광소자(ELD; Electroluminescent Display) 및 전자 크로믹 소자(Electrochromic Display)를 포함하는 평판형 표시 소자(FPD; Flat Panel Display)와 태양전지 등에 이용되고 있다. 낮은 비저항과 높은 투과율의 ITO 박막은 $300^{\circ}C$ 이상의 고온에서 코팅해야 하는 것으로 알려져 있다. 그러나 최근 플라스틱과 같은 연성 소자가 전자부품에 널리 이용되면서 ITO를 저온에서 증착해야할 필요성이 대두되고 있다. 본 연구에서는 ITO를 플라스틱에 적용하기 위한 저온 코팅 공정 및 시편의 전 후처리공정을 개발하여 박막의 특성을 알아보고자 한다. 실험에 사용된 기판은 고투과율의 고분자(polyethylene terephthalate; PET) 필름이며 $5\;{\times}\;10\;cm^2$의 크기로 절단하여 알코올로 초음파 세척을 실시하였고, 진공 용기에 장입한 후 펄스전원을 이용하여 3분간 in-situ 청정을 실시하였다. ITO 코팅은 마그네트론 스퍼터링을 이용하였으며, 코팅시간, 전처리, 후처리, 기판온도, 산소유량 등 코팅 조건에 따른 박막의 특성을 조사하였다. ITO 박막의 코팅 조건에 따른 박막의 결정구조 분석은 x-선 회절(x-ray diffraction; XRD)을 이용하였고, 박막의 표면형상과 두께 보정 및 단면의 미세조직과 결정 성장 여부 등은 투과전자 현미경(transmission electron microscope; TEM)을 이용하여 분석하였다. 또한 ITO 박막의 면저항과 분광특성은 four-point Probe (CMP-100MP, Advanced Instrument Technology), spectrophotometer (UV-1601, SHIMADZU)를 이용하여 측정하였다. ITO 박막의 광학특성 분석 결과 전광선 투과율은 두께에 따라 변화 하였지만, 색차와 Haze 값은 증착 조건에 따라 큰 차이는 보이지 않았다. 그리고 박막의 결정화에 영향을 주는 가장 중요한 인자는 기판온도이지만, 기판온도를 높이지 못할 경우 비평형 마그네트론(unbalanced-magnetron; UBM)에 의해서 플라즈마 밀도를 높이는 방법으로 유사한 효과를 얻을 수 있음을 확인하였다.

  • PDF

고분자 연료전지용 MEA 연속 코팅공정 개발 (Continuous Coating Process Development for PEFC Membrane Electrode Assembly)

  • 박석희;윤영기;김창수;이원용
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2006년도 춘계학술대회
    • /
    • pp.110-112
    • /
    • 2006
  • Membrane electrode assembly (MEA) for polymer electrolyte fuel cell (PEFC) are commonly prepared in the research laboratory by spraying, screen-printing and brushing catalyst slurry onto membrane or other support material like carbon paper or polyimide film in a batch style. These hand applications of the catalyst slurry are painstaking process with respect to precision of catalyst loading and reproducibility. It has been generally mentioned that the adoption of continuous process is very helpful to develop the reliable product. In the present work, we report the results of using continuous type coater with doctor-blade to coat catalyst slurry for preparing the MEA catalyst layers In a faster and highly reproducible fashion. We show that while expectedly faster than batch style, the machine coater requires the use of slurry of appropriate composition and a properly selected transfer decal material in order to achieve superior MEA plat lnw loading reproducibility. To make highly viscous catalyst slurry that is imperative for using coater, we use 40wt.% Nafion solution and minimize the content of organic solvent. And the choice of proper high surface area catalyst is important in the viewpoint of making well-dispersed slurry. After catalyst coating onto the support material, we transferred the catalyst layer to both sides of Nafion membrane by hot-pressing In this case, the degree of transfer was Influenced by hot-pressing condition including temperature, pressure, and time. To compare the transferring ability, we compared so many films and detaching papers. And among the support, polyethylene terephthalate(PET) film shows the prominent result.

  • PDF

육방정질화붕소 나노플레이크/폴리이미드 복합체를 이용한 마찰전기 나노발전기 평가 (Evaluation of h-BN Nanoflakes/Polyimide Composites for a Triboelectric Nanogenerator)

  • 박선영;변도영;조대현
    • Tribology and Lubricants
    • /
    • 제37권4호
    • /
    • pp.125-128
    • /
    • 2021
  • A means of enhancing the performance of triboelectric nanogenerators (TENGs) is increasing the differences in work functions between contacting materials. Hexagonal boron nitride (h-BN) exhibits excellent mechanical properties and high chemical stability as well as a high work function. As a result, engineers in the field of energy harvesting have envisioned using h-BN in the electrification layer in TENGs. For the industrial application of h-BN in TENGs, large-scale production is necessary, and h-BN is generally exfoliated and dispersed in various solvents. In this study, we evaluate the performance of a TENG with h-BN nanoflakes in the polyimide (PI) layer. To synthesize a PI composite containing h-BN nanoflakes, h-BN powders are exfoliated and dispersed in poly(amic acid) (PAA), which is the precursor of PI. Then, h-BN dispersion is spin-coated onto the PI film and cured for 2 h under 300℃. This composite material can then be used for the electrification layer in TENGs. Below the electrification layer, an aluminum foil is placed and used as an electrode. When the contact and separation processes with polyethylene terephthalate are repeated, the fabricated TENG shows a maximum power density of 190.8 W/m2. This study shows that h-BN is a promising material for enhancing the performance of the electrification layer in TENGs.

PZT계 압전 세라믹 파이버 어레이 복합체를 이용한 미소 풍력 에너지 하베스터 (Small-Scale Wind Energy Harvester Using PZT Based Piezoelectric Ceramic Fiber Composite Array)

  • 이민선;나용현;박진우;정영훈
    • 한국전기전자재료학회논문지
    • /
    • 제32권5호
    • /
    • pp.418-425
    • /
    • 2019
  • A piezoelectric ceramic fiber composite (PCFC) was successfully fabricated using $0.69Pb(Zr_{0.47}Ti_{0.53})O_3-0.31[Pb(Zn_{0.4}Ni_{0.6})_{1/3}Nb_{2/3}]O_3$ (PZT-PZNN) for use in small-scale wind energy harvesters. The PCFC was formed using an epoxy matrix material and an array of Ag/Pd-coated PZT-PZNN piezo-ceramic fibers sandwiched by Cu interdigitated electrode patterned polyethylene terephthalate film. The energy harvesting performance was evaluated in a custom-made wind tunnel while varying the wind speed and resistive load with two types of flutter wind energy harvesters. One had a five-PCFC array vertically clamped with a supporting acrylic rod while the other used the same structure but with a five-PCFC cantilever array. Stainless steel (thickness: $50{\mu}m$) was attached onto one side of the PCFC to form the PZT-PZNN cantilever. The output power, in general, increased with an increase in the wind speed from 2 m/s to 10 m/s for both energy harvesters. The highest output power of $15.1{\mu}W$ at $14k{\Omega}$ was obtained at a wind speed of 10 m/s for the flutter wind energy harvester with the PZT-PZNN cantilever array. The results presented here reveal the strong potential for wind energy harvester applications to supply sustainable power to various IoT micro-devices.

액체-고체 접촉대전을 위한 PET 기판 기반 ODA/PDMS 딥 코팅 제조 및 평가 (Synthesis and Evaluation of Superhydrophobic ODA/PDMS Dip Coating on PET for Liquid-Solid Contact Electrification)

  • 박선영;강현규;변도영;조대현
    • Tribology and Lubricants
    • /
    • 제37권2호
    • /
    • pp.71-76
    • /
    • 2021
  • As opposed to using fossil fuels, we need to use eco-friendly resources such as sunlight, raindrops and wind to produce electricity and combat environmental pollution. A triboelectric nanogenerator (TENG) is a device that converts mechanical energy into electricity by inducing repetitive contact and separation of two dissimilar materials. During the contact and separation processes, electron flow occurs owing to a change in electric potential of the contacting surface caused by contact electrification and electrostatic induction mechanisms. A solid-solid contact TENG is widely known, but it is possible to generate electricity via liquid-solid contact. Therefore, by designing a hydrophobic TENG, we can gather electricity from raindrop energy in a feasible manner. To fabricate the superhydrophobic surface of TENGs, we employ a dip coating technique to synthesize an octadecylamine (ODA)- and polydimethylsiloxane (PDMS)-based coating on polyethylene terephthalate (PET). The synthesized coating exhibits superhydrophobicity with a contact angle greater than 150° and generates a current of 2.2 ㎂/L while water droplets fall onto it continuously. Hence, we prepare a box-type TENG, with the ODA/PDMS coating deposited on the inside, and place a 1.5 mL water droplet into it. Resultantly, we confirm that the induced vibration causes continuous impacts between the ODA/PDMS coating and the water, generating approximately 100 pA for each impact.

Carbon Nanotube Film을 이용한 액체 전기화학 센서 (Liquid electrochemical sensors using carbon nanotube film)

  • 노재하;안상수;이창한;이상태;이문진;서동민;장지호
    • 센서학회지
    • /
    • 제30권4호
    • /
    • pp.255-260
    • /
    • 2021
  • We studied electrochemical sensors using printed carbon nanotube (CNT) film on a polyethylene terephthalate (PET) substrate. Multiwalled CNT films were printed on a PET substrate to study its feasibility as hazardous and noxious substances (HNS) detection sensor. The printed CNT film (PCF) with a 50 ㎛ thickness exhibited a specific resistance of 230 ohm. To determine the optimum sensor structure, a resistance-type PCF sensor (R-type PCF sensor) and a conductive-type PCF sensor (C-type PCF sensor) were fabricated and compared using diluted NH3 droplets with various concentrations. The response magnitude, response time, sensitivity, linearity, and limit of detection (LOD) were compared, and it was concluded that the C-type PCF sensor exhibited superior performance. By applying a C-Type PCF sensor, we confirmed the detection performance of 12 types of floating HNS and the response of the sensor with selectivity according to the degree of polarity.

고성능 평면 슈퍼커패시터를 위한 얇고 유연한 폴리아닐린 전극 제작 (Fabrication of a Thin and Flexible Polyaniline Electrode for High-performance Planar Supercapacitors)

  • 손선규;김서진;신준호;류태공;정재민;최봉길
    • 공업화학
    • /
    • 제32권4호
    • /
    • pp.403-408
    • /
    • 2021
  • 본 논문에서는 얇고 유연한 평면 슈퍼 커패시터(PSC)를 스크린 인쇄된 탄소 전극에 폴리아닐린(PANI)을 코팅하여 제작하였습니다. 스크린 프린팅 방법을 사용하여 유연한 폴리에틸렌 테레프탈레이트에 탄소 잉크를 코팅한 후 희석 중합 법을 사용하여 탄소 표면에 PANI 박막을 코팅하였습니다. 서로 맞물린 구조의 얇은 유연한 PANI 전극을 폴리머겔 전해질로 조립하여 평면 모양의 슈퍼 커패시터(PSC) 장치를 만들었습니다. 상기 제조된 PANI/PSC는 매우 얇고 유연 하였으며, 10 mV/s에서 409 µF/cm2의 높은 면적 정전용량을 나타내었습니다. 이 값은 500 mV/s에서 원래 값의 46%로 유지되었습니다. 유연한 PANI/PSC는 180°의 구부러진 상태와 100번째의 반복적인 피로도 테스트에서도 82%의 높은 정전 용량 유지를 보여주었습니다.

Comparison of Hemodynamic Energy between Expanded Polytetrafluoroethylene and Dacron Artificial Vessels

  • Lim, Jaekwan;Won, Jong Yun;Ahn, Chi Bum;Kim, Jieon;Kim, Hee Jung;Jung, Jae Seung
    • Journal of Chest Surgery
    • /
    • 제54권2호
    • /
    • pp.81-87
    • /
    • 2021
  • Background: Artificial grafts such as polyethylene terephthalate (Dacron) and expanded polytetrafluoroethylene (ePTFE) are used for various cardiovascular surgical procedures. The compliance properties of prosthetic grafts could affect hemodynamic energy, which can be measured using the energy-equivalent pressure (EEP) and surplus hemodynamic energy (SHE). We investigated changes in the hemodynamic energy of prosthetic grafts. Methods: In a simulation test, the changes in EEP for these grafts were estimated using COMSOL MULTIPHYSICS. The Young modulus, Poisson ratio, and density were used to analyze the grafts' material properties, and pre- and post-graft EEP values were obtained by computing the product of the pressure and velocity. In an in vivo study, Dacron and ePTFE grafts were anastomosed in an end-to-side fashion on the descending thoracic aorta of swine. The pulsatile pump flow was fixed at 2 L/min. Real-time flow and pressure were measured at the distal part of each graft, while clamping the other graft and the descending thoracic aorta. EEP and SHE were calculated and compared. Results: In the simulation test, the mean arterial pressure decreased by 39% for all simulations. EEP decreased by 42% for both grafts, and by around 55% for the native blood vessels after grafting. The in vivo test showed no significant difference between both grafts in terms of EEP and SHE. Conclusion: The post-graft hemodynamic energy was not different between the Dacron and ePTFE grafts. Artificial grafts are less compliant than native blood vessels; however, they can deliver pulsatile blood flow and hemodynamic energy without any significant energy loss.

Photostability evaluation of Jawarishe Jalinoos

  • Shahnawaz, Shahnawaz;Rahman, Khaleequr;Sultana, Arshiya;Sultana, Shabiya
    • 셀메드
    • /
    • 제11권4호
    • /
    • pp.18.1-18.8
    • /
    • 2021
  • Jawarishe Jalinoos (JJ) is an orally used formulation available in semisolid dosage form, prepared with powdered plant materials mixed in honey or sugar syrup. It has many admirable pharmacological effects and used in Unani medicine to treat various acute and chronic disorders since ancient times. The ICH Harmonised Tripartite Guideline stated that photostability testing should be an essential part of stability testing to confirm that light exposure does not result in an unacceptable change in drugs substance and finished products. To date, the effect of light on JJ is not studied, in this study photostability evaluation of JJ was carried out. The test sample was manufactured with genuine ingredients in the in-door pharmacy of the National Institute of Unani Medicine. JJ was packed in two transparent polyethylene terephthalate airtight containers. The first sample was analysed at zero-day and the second sample was placed in a stability chamber subjected to light challenge with an overall illumination of 1.2 million lux hours combined with near ultraviolet energy of 200-watt hours per square meter by using option 2, along with 30±2℃ temperature and relative humidity 70±5%. Analysis of both finished products showed no considerable changes in organoleptic characters. Less than 5% variation was observed in physicochemical parameters. HPTLC fingerprinting showed justifiable variation. Microbial load and specific counts were within the limit prescribed by WHO. As no unacceptable changes were noted in JJ subjecting to light challenge, it is concluded that JJ is a photostable Unani compound formulation.