• Title/Summary/Keyword: Poly-crystalline silicon film

Search Result 30, Processing Time 0.028 seconds

A Research About P-type Polycrystalline Silicon Thin Film Transistors of Low Temperature with Metal Gate Electrode and High Temperature with Gate Poly Silicon (실리콘 게이트전극을 갖는 고온소자와 금속 게이트전극을 갖는 P형 저온 다결정 실리콘 박막 트랜지스터의 전기특성 비교 연구)

  • Lee, Jin-Min
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.6
    • /
    • pp.433-439
    • /
    • 2011
  • Poly Si TFTs (poly silicon thin film transistors) with p channel those are annealed HT (high temperature) with gate poly crystalline silicon and LT (low temperature) with metal gate electrode were fabricated on quartz substrate using the analyzed data and compared according to the activated grade silicon thin films and the size of device channel. The electrical characteristics of HT poly-Si TFTs increased those are the on current, electron mobility and decrease threshold voltage by the quality of particles of active thin films annealed at high temperature. But the on/off current ratio reduced by increase of the off current depend on the hot carrier applied to high gate voltage. Even though the size of the particles annealed at low temperature are bigger than HT poly-Si TFTs due to defect in the activated grade poly crystal silicon and the grain boundary, the characteristics of LT poly-Si TFTs were investigated deterioration phenomena those are decrease the electric off current, electron mobility and increase threshold voltage. The results of transconductance show that slope depend on the quality of particles and the amplitude depend on the size of the active silicon particles.

Analysis of Electrical Characteristics of Low Temperature and High Temperature Poly Silicon TFTs(Thin Film Transistors) by Step Annealing (스텝 어닐링에 의한 저온 및 고온 n형 다결정 실리콘 박막 트랜지스터의 전기적 특성 분석)

  • Lee, Jin-Min
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.7
    • /
    • pp.525-531
    • /
    • 2011
  • In this paper, experimental analyses have been performed to compare the electrical characteristics of n channel LT(low temperature) and HT(high temperature) poly-Si TFTs(polycrystalline silicon thin film transistors) on quartz substrate according to activated step annealing. The size of the particles step annealed at low temperature are bigger than high temperature poly-Si TFTs and measurements show that the electric characteristics those are transconductance, threshold voltage, electric effective mobility, on and off current of step annealed at LT poly-Si TFTs are high more than HT poly-Si TFT's. Especially we can estimated the defect in the activated grade poly crystalline silicon and the grain boundary of LT poly-Si TFT have more high than HT poly-Si TFT's due to high off electric current. Even though the size of particles of step annealed at low temperature, the electrical characteristics of LT poly-Si TFTs were investigated deterioration phenomena that is decrease on/off current ratio depend on high off current due to defects in active silicon layer.

Effects of Neutral Particle Beam on Nano-Crystalline Silicon Thin Film Deposited by Using Neutral Beam Assisted Chemical Vapor Deposition at Room Temperature

  • Lee, Dong-Hyeok;Jang, Jin-Nyoung;So, Hyun-Wook;Yoo, Suk-Jae;Lee, Bon-Ju;Hong, Mun-Pyo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.254-255
    • /
    • 2012
  • Interest in nano-crystalline silicon (nc-Si) thin films has been growing because of their favorable processing conditions for certain electronic devices. In particular, there has been an increase in the use of nc-Si thin films in photovoltaics for large solar cell panels and in thin film transistors for large flat panel displays. One of the most important material properties for these device applications is the macroscopic charge-carrier mobility. Hydrogenated amorphous silicon (a-Si:H) or nc-Si is a basic material in thin film transistors (TFTs). However, a-Si:H based devices have low carrier mobility and bias instability due to their metastable properties. The large number of trap sites and incomplete hydrogen passivation of a-Si:H film produce limited carrier transport. The basic electrical properties, including the carrier mobility and stability, of nc-Si TFTs might be superior to those of a-Si:H thin film. However, typical nc-Si thin films tend to have mobilities similar to a-Si films, although changes in the processing conditions can enhance the mobility. In polycrystalline silicon (poly-Si) thin films, the performance of the devices is strongly influenced by the boundaries between neighboring crystalline grains. These grain boundaries limit the conductance of macroscopic regions comprised of multiple grains. In much of the work on poly-Si thin films, it was shown that the performance of TFTs was largely determined by the number and location of the grain boundaries within the channel. Hence, efforts were made to reduce the total number of grain boundaries by increasing the average grain size. However, even a small number of grain boundaries can significantly reduce the macroscopic charge carrier mobility. The nano-crystalline or polymorphous-Si development for TFT and solar cells have been employed to compensate for disadvantage inherent to a-Si and micro-crystalline silicon (${\mu}$-Si). Recently, a novel process for deposition of nano-crystralline silicon (nc-Si) thin films at room temperature was developed using neutral beam assisted chemical vapor deposition (NBaCVD) with a neutral particle beam (NPB) source, which controls the energy of incident neutral particles in the range of 1~300 eV in order to enhance the atomic activation and crystalline of thin films at room temperature. In previous our experiments, we verified favorable properties of nc-Si thin films for certain electronic devices. During the formation of the nc-Si thin films by the NBaCVD with various process conditions, NPB energy directly controlled by the reflector bias and effectively increased crystal fraction (~80%) by uniformly distributed nc grains with 3~10 nm size. The more resent work on nc-Si thin film transistors (TFT) was done. We identified the performance of nc-Si TFT active channeal layers. The dependence of the performance of nc-Si TFT on the primary process parameters is explored. Raman, FT-IR and transmission electron microscope (TEM) were used to study the microstructures and the crystalline volume fraction of nc-Si films. The electric properties were investigated on Cr/SiO2/nc-Si metal-oxide-semiconductor (MOS) capacitors.

  • PDF

Fabrication of Ultra Low Temperature Poly crystalline Silicon Thin-Film Transistors on a Plastic Substrate (고분자 기판 상에 제작된 극저온 다결정 실리콘 박막 트랜지스터에 관한 연구)

  • Kim, Yong-Hoon;Kim, Won-Keun;Moon, Dae-Gyu;Han, Jeong-In
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.445-446
    • /
    • 2005
  • This letter reports the fabrication of polycrystalline silicon thin-film transistors (poly-Si TFT) on flexible plastic substrates using amorphous silicon (a-Si) precursor films by sputter deposition. The a-Si films were deposited with mixture gas of argon and helium to minimize the argon incorporation into the film. The precursor films were then laser crystallized using XeCl excimer laser irradiation and a four-mask-processed poly-Si TFTs were fabricated with fully self-aligned top gate structure.

  • PDF

Poly-crystalline Silicon Thin Film Transistor: a Two-dimensional Threshold Voltage Analysis using Green's Function Approach

  • Sehgal, Amit;Mangla, Tina;Gupta, Mridula;Gupta, R.S.
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.7 no.4
    • /
    • pp.287-298
    • /
    • 2007
  • A two-dimensional treatment of the potential distribution under the depletion approximation is presented for poly-crystalline silicon thin film transistors. Green's function approach is adopted to solve the two-dimensional Poisson's equation. The solution for the potential distribution is derived using Neumann's boundary condition at the silicon-silicon di-oxide interface. The developed model gives insight into device behavior due to the effects of traps and grain-boundaries. Also short-channel effects and drain induced barrier lowering effects are incorporated in the model. The potential distribution and electric field variation with various device parameters is shown. An analysis of threshold voltage is also presented. The results obtained show good agreement with simulated results and numerical modeling based on the finite difference method, thus demonstrating the validity of our model.

An Offset-Compensated LVDS Receiver with Low-Temperature Poly-Si Thin Film Transistor

  • Min, Kyung-Youl;Yoo, Chang-Sik
    • ETRI Journal
    • /
    • v.29 no.1
    • /
    • pp.45-49
    • /
    • 2007
  • The poly-Si thin film transistor (TFT) shows large variations in its characteristics due to the grain boundary of poly-crystalline silicon. This results in unacceptably large input offset of low-voltage differential signaling (LVDS) receivers. To cancel the large input offset of poly-Si TFT LVDS receivers, a full-digital offset compensation scheme has been developed and verified to be able to keep the input offset under 15 mV which is sufficiently small for LVDS signal receiving.

  • PDF

Progess in Fabrication Technologies of Polycrystalline Silicon Thin Film Transistors at Low Temperatures

  • Sameshima, T.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.129-134
    • /
    • 2004
  • The development of fabrication processes of polycrystalline-silicon-thin-film transistors (poly-Si TFTs) at low temperatures is reviewed. Rapid crystallization through laser-induced melt-regrowth has an advantage of formation of crystalline silicon films at a low thermal budget. Solid phase crystallization techniques have also been improved for low temperature processing. Passivation of $SiO_2$/Si interface and grain boundaries is important to achieve high carrier transport properties. Oxygen plasma and $H_2O$ vapor heat treatments are proposed for effective reduction of the density of defect states. TFTs with high performance is reported.

  • PDF

Fabrication of Poly Seed Layer for Silicon Based Photovoltaics by Inversed Aluminum-Induced Crystallization (역 알루미늄 유도 결정화 공정을 이용한 실리콘 태양전지 다결정 시드층 생성)

  • Choi, Seung-Ho;Park, Chan-Su;Kim, Shin-Ho;Kim, Yang-Do
    • Korean Journal of Materials Research
    • /
    • v.22 no.4
    • /
    • pp.190-194
    • /
    • 2012
  • The formation of high-quality polycrystalline silicon (poly-Si) on relatively low cost substrate has been an important issue in the development of thin film solar cells. Poly-Si seed layers were fabricated by an inverse aluminum-induced crystallization (I-AIC) process and the properties of the resulting layer were characterized. The I-AIC process has an advantage of being able to continue the epitaxial growth without an Al layer removing process. An amorphous Si precursor layer was deposited on Corning glass substrates by RF magnetron sputtering system with Ar plasma. Then, Al thin film was deposited by thermal evaporation. An $SiO_2$ diffusion barrier layer was formed between Si and Al layers to control the surface orientation of seed layer. The crystallinity of the poly-Si seed layer was analyzed by Raman spectroscopy and x-ray diffraction (XRD). The grain size and orientation of the poly-Si seed layer were determined by electron back scattering diffraction (EBSD) method. The prepared poly-Si seed layer showed high volume fraction of crystalline Si and <100> orientation. The diffusion barrier layer and processing temperature significantly affected the grain size and orientation of the poly Si seed layer. The shorter oxidation time and lower processing temperature led to a better orientation of the poly-Si seed layer. This study presents the formation mechanism of a poly seed layer by inverse aluminum-induced crystallization.

Magnetic Field-Assisted, Nickel-Induced Crystallization of Amorphous Silicon Thin Film

  • Moon, Sunwoo;Kim, Kyeonghun;Kim, Sungmin;Jang, Jinhyeok;Lee, Seungmin;Kim, Jung-Su;Kim, Donghwan;Han, Seung-Hee
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.313-313
    • /
    • 2013
  • For high-performance TFT (Thin film transistor), poly-crystalline semiconductor thin film with low resistivity and high hall carrier mobility is necessary. But, conventional SPC (Solid phase crystallization) process has disadvantages in fabrication such as long annealing time in high temperature or using very expensive Excimer laser. On the contrary, MIC (Metal-induced crystallization) process enables semiconductor thin film crystallization at lower temperature in short annealing time. But, it has been known that the poly-crystalline semiconductor thin film fabricated by MIC methods, has low hall mobility due to the residual metals after crystallization process. In this study, Ni metal was shallow implanted using PIII&D (Plasma Immersion Ion Implantation & Deposition) technique instead of depositing Ni layer to reduce the Ni contamination after annealing. In addition, the effect of external magnetic field during annealing was studied to enhance the amorphous silicon thin film crystallization process. Various thin film analytical techniques such as XRD (X-Ray Diffraction), Raman spectroscopy, and XPS (X-ray Photoelectron Spectroscopy), Hall mobility measurement system were used to investigate the structure and composition of silicon thin film samples.

  • PDF

A Study on Electric Characteristics of Silicon Implanted p Channel Polycrystalline Silicon Thin Film Transistors Fabricated on High Temperature (고온에서 제조된 실리콘 주입 p채널 다결정 실리콘 박막 트랜지스터의 전기 특성 변화 연구)

  • Lee, Jin-Min
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.5
    • /
    • pp.364-369
    • /
    • 2011
  • Analyzing electrical degradation of polycrystalline silicon transistor to applicable at several environment is very important issue. In this research, after fabricating p channel poly crystalline silicon TFT (thin film transistor) electrical characteristics were compare and analized that changed by gate bias with first measurement. As a result on and off current was reduced by variation of gate bias and especially re duce ratio of off current was reduced by $7.1{\times}10^1$. On/off current ratio, threshold voltage and electron mobility increased. Also, when channel length gets shorter on/off current ratio was increased more and thresh old voltage increased less. It was cause due to electron trap and de-trap to gate silicon oxide by variation of gate bias.