• Title/Summary/Keyword: Poly (vinylidene fluoride)

검색결과 190건 처리시간 0.027초

다공성 분리막으로 응용을 위한 PVDF-실리카 혼합물의 응고액 열용량 변화에 따른 모폴로지 변화 (Effect of Heat Capacity of Coagulant on Morphology of PVDF-Silica Mixture Through TIPS Process for the Application of Porous Membrane)

  • 이정우;남상용
    • 멤브레인
    • /
    • 제27권5호
    • /
    • pp.458-467
    • /
    • 2017
  • 본 연구는 열유도 상분리법(thermally induced phase separation, TIPS)을 사용하여, 수처리 분리막에 적용하기 위해, 응고조의 열용량의 변화를 위해 서로 다른 두 용액의 함량을 조절하였다. 또한, 온도의 변화를 통해 분리막의 구조 변화에 대하여 관찰하였다. 분리막을 제조하기 위한 소재로는 수처리 분리막에 주로 이용되는 기계적 물성과 내화학성이 우수한 poly (vinylidene fluoride)(PVDF)를 사용하였고, 첨가제로 실리카를 이용하였다. 희석제는 PVDF와 호환성이 좋은 dioctyl phthalate (DOP), dibutyl phthalate (DBP)를 사용하였다. 응고액의 함량 변화에 따른 열용량 변화에 따라 제조된 분리막의 구조를 관찰하기 위해 SEM 이미지를 촬영하였다. 열용량이 증가할수록 PVDF의 결정화 속도가 느려져 큰 기공을 나타내며 열용량이 작을수록 결정화 속도가 증가하여 작은 기공이 생기는 것을 확인하였다.

Transparent and Flexible All-Organic Multi-Functional Sensing Devices Based on Field-effect Transistor Structure

  • Trung, Tran Quang;Tien, Nguyen Thanh;Seol, Young-Gug;Lee, Nae-Eung
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제40회 동계학술대회 초록집
    • /
    • pp.491-491
    • /
    • 2011
  • Transparent and flexible electronic devices that are light-weight, unbreakable, low power consumption, optically transparent, and mechanical flexible possibly have great potential in new applications of digital gadgets. Potential applications include transparent displays, heads-up display, sensor, and artificial skin. Recent reports on transparent and flexible field-effect transistors (tf-FETs) have focused on improving mechanical properties, optical transmittance, and performances. Most of tf-FET devices were fabricated with transparent oxide semiconductors which mechanical flexibility is limited. And, there have been no reports of transparent and flexible all-organic tf-FETs fabricated with organic semiconductor channel, gate dielectric, gate electrode, source/drain electrode, and encapsulation for sensor applications. We present the first demonstration of transparent, flexible all-organic sensor based on multifunctional organic FETs with organic semiconductor channel, gate dielectric, and electrodes having a capability of sensing infrared (IR) radiation and mechanical strain. The key component of our device design is to integrate the poly(vinylidene fluoride-triflouroethylene) (P(VDF-TrFE) co-polymer directly into transparent and flexible OFETs as a multi-functional dielectric layer, which has both piezoelectric and pyroelectric properties. The P(VDF-TrFE) co-polumer gate dielectric has a high sensitivity to the wavelength regime over 800 nm. In particular, wavelength variations of P(VDF-TrFE) molecules coincide with wavelength range of IR radiation from human body (7000 nm ~14000 nm) so that the devices are highly sensitive with IR radiation of human body. Devices were examined by measuring IR light response at different powers. After that, we continued to measure IR response under various bending radius. AC (alternating current) gate biasing method was used to separate the response of direct pyroelectric gate dielectric and other electrical parameters such as mobility, capacitance, and contact resistance. Experiment results demonstrate that the tf-OTFT with high sensitivity to IR radiation can be applied for IR sensors.

  • PDF

Ferroelectric-gate Field Effect Transistor Based Nonvolatile Memory Devices Using Silicon Nanowire Conducting Channel

  • Van, Ngoc Huynh;Lee, Jae-Hyun;Sohn, Jung-Inn;Cha, Seung-Nam;Hwang, Dong-Mok;Kim, Jong-Min;Kang, Dae-Joon
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제42회 동계 정기 학술대회 초록집
    • /
    • pp.427-427
    • /
    • 2012
  • Ferroelectric-gate field effect transistor based memory using a nanowire as a conducting channel offers exceptional advantages over conventional memory devices, like small cell size, low-voltage operation, low power consumption, fast programming/erase speed and non-volatility. We successfully fabricated ferroelectric nonvolatile memory devices using both n-type and p-type Si nanowires coated with organic ferroelectric poly(vinylidene fluoride-trifluoroethylene) [P(VDF-TrFE)] via a low temperature fabrication process. The devices performance was carefully characterized in terms of their electrical transport, retention time and endurance test. Our p-type Si NW ferroelectric memory devices exhibit excellent memory characteristics with a large modulation in channel conductance between ON and OFF states exceeding $10^5$; long retention time of over $5{\times}10^4$ sec and high endurance of over 105 programming cycles while maintaining ON/OFF ratio higher $10^3$. This result offers a viable way to fabricate a high performance high-density nonvolatile memory device using a low temperature fabrication processing technique, which makes it suitable for flexible electronics.

  • PDF

메조포러스 ZnS가 충전된 P(VDF-HPF) 고분자 전해질 (P(VDF-HPF)-Based Polymer Electrolyte Filled with Mesoporous ZnS)

  • 서영주;차종호;이흔;하용준;고정환;이철행
    • Korean Chemical Engineering Research
    • /
    • 제46권1호
    • /
    • pp.170-174
    • /
    • 2008
  • 리튬염을 포함하는 P(VDF-HFP)계 겔 고분자에 surfactant-assisted templating process로 합성한 메조포러스 ZnS를 충전하여 다양한 ZnS 무게비를 가지는 전해질 필름을 제조하였고 겔 필름의 이온 전도도를 온도에 따라 측정하였다. 그 결과, 대체적으로 ZnS의 함량비가 증가할수록 증가하였다. 특히 20 wt%와 25 wt% ZnS를 포함하는 겔 필름은 상온에서 $10^{-4}Scm^{-1}$의 높은 이온 전도도를 보였다. 하지만 20 wt% 이상의 함량비에서는 더 이상 이온 전도도가 증가하지 않았다. 합성된 메조포러스 ZnS와 겔 전해질 필름의 특성은 XRD(x-ray diffractometer), DSC(differential scanning calorimetry), TGA(thermogravimetric analysis), FT-IR(fourier transform-infrared spectrometer), SEM(scanning electron microscopy), TEM(transmission electron microscopy)을 이용하여 분석하였다. 이온 전도도는 교류 임피던스법에 따라서 승온하면서 측정하였다.

Adsorptive removal of Ni(II) ions from aqueous solution by PVDF/Gemini-ATP hybrid membrane

  • Zhang, Guifang;Qin, Yingxi;Lv, Chao;Liu, Xingtian;Zhao, Yiping;Chen, Li
    • Membrane and Water Treatment
    • /
    • 제7권3호
    • /
    • pp.209-221
    • /
    • 2016
  • As a highly hydrophilic fibrillar mineral in nature, attapulgite (ATP) is a promising new additive for preparation of ultrafiltration (UF) hybrid membrane. In this work, ATP particles, which were grafted with a new Gemini surfactant of Ethyl Stearate-di(octadecyl dimethyl ammonium chloride) to detach the crystal bundles to single crystal and enhance the uniform dispersion in an organic polymer matrix, were incorporated into poly(vinylidene fluoride) (PVDF) matrix, and PVDF/Gemini-ATP hybrid membranes for adsorptive removal of Ni(II) ions from aqueous solution were prepared via a phase inversion method. Chemical composition, crystalization and morphology of the modified ATP were characterized by Fourier transform infrared spectroscopy (FTIR), Transmission electron microscope (TEM) and X-ray diffraction (XRD), respectively. The morphology of the hybrid membrane was characterized by Scanning electron microscopy (SEM), the performance of permeability, hydrophilicity and adsorption of Ni(II) ions were studied, and the adsorption kinetics of the PVDF/ATP hybrid membranes were particular concerned. The results showed that the hybrid membrane displayed a good thermal stability and hydrophilicity. Comparing with PVDF membrane, the hybrid membrane possessed good adsorption capacity for Ni(II) ions, and the adsorption kinetics fit well with Lagergren second-order equation.

강유전성 폴리(비닐리덴 플로라이드-트리플로로에틸렌) 박막의 항전계의 주파수 특성 분석 (Frequency Characteristics of Coercive Field in Ferroelectric Poly(Vinylidene Fluoride-Trifluoroethylene) Thin Film)

  • 장정;라흐만 셰이크 압둘;칸 세나와르 알리;이광만;김우영
    • 한국응용과학기술학회지
    • /
    • 제35권4호
    • /
    • pp.1206-1212
    • /
    • 2018
  • 본 연구에서는 강유전성 고분자를 이용하여 제작된 100 nm 이하 두께를 가지는 박막형 커페시터의 측정 주파수에 따른 분극 반전 특성을 측정, 분석하였다. 고정된 박막 두께에 대해, 인가되는 최고 전기장의 세기가 증가할수록 더 높은 항전계에서 분극 반전이 발생되었다. 고정된 최고 전기장에 대해, 박막의 두께에 무관하게 같은 항전계에서 분극 반전이 발생되었다. 모든 측정에서 로그스케일 전기장 및 로그스케일 주파수의 관계에서 약 $0.12{\pm}0.01$의 비례 상수를 보였다. 결과적으로, 강유전체 고분자 커페시터가 40 nm 두께까지는 size effect 없이 일정한 분극 반전 특성을 보였다. 본 연구는 저전압 동작 고분자 메모리 소자의 동작 예측에 유용할 것이므로 저전압에서 동작 가능한 고분자 메모리 소자의 가능성을 보여준다.

Preparation of highly hydrophobic PVDF hollow fiber composite membrane with lotus leaf-like surface and its desalination properties

  • Li, Hongbin;Zi, Xingchen;Shi, Wenying;Qin, Longwei;Zhang, Haixia;Qin, Xiaohong
    • Membrane and Water Treatment
    • /
    • 제10권4호
    • /
    • pp.287-298
    • /
    • 2019
  • Lotus leaf has a special dual micro and nano surface structure which gives its highly hydrophobic surface characteristics and so-called self cleaning effect. In order to endow PVDF hollow fiber membrane with this special structure and improve the hydrophobicity of membrane surface, PVDF hollow fiber composite membranes was obtained through the immersion coating of poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) dilute solution on the outside surface of PVDF support membrane. The prepared PVDF composite membranes were used in the vacuum membrane distillation (VMD) for the desalination. The effects of PVDF-HFP dilute solution concentration in the dope solution and coating time on VMD separation performance was studied. Membranes were characterized by SEM, WCA measurement, porosity, and liquid entry pressure of water. VMD test was carried out using $35g{\cdot}L^{-1}$ NaCl aqueous solution as the feed solution at feed temperature of $30^{\circ}C$ and the permeate pressure of 31.3 kPa. The vapour flux reached a maximum when PVDF-HFP concentration in the dilute solution was 5 wt% and the coating time was kept in the range of 10-60 s. This was attributed to the well configuration of micro-nano rods which was similar with the dual micro-nano structure on the lotus leaf. Compared with the original PVDF membrane, the salt rejection can be well maintained which was greater than 99.99 % meanwhile permeation water conductivity was kept at a low value of $7-9{\mu}S{\cdot}cm^{-1}$ during the continuous testing for 360 h.

P(VDF-TrFE-CFE)를 이용한 초소형 압전 적층형 진동 출력 소자의 제작 (Fabrication of Ultra-Small Multi-Layer Piezoelectric Vibrational Device Using P(VDF-TrFE-CFE))

  • 조성우;;김재규;류정재;김윤정;김혜진;박강호;홍승범
    • 한국전기전자재료학회논문지
    • /
    • 제32권2호
    • /
    • pp.157-160
    • /
    • 2019
  • P(VDF-TrFE-CFE) (Poly (vinylidene fluoride-trifluoroethylene-chlorofluoroethylene)), which exhibits a high electrostriction of about 7%, can transmit tactile output as vibration or displacement. In this study, we investigated the applicability of P(VDF-TrFE-CFE) to wearable piezoelectric actuators. The P(VDF-TrFE-CFE) layers were deposited through spin-coating, and interspaced with patterned Ag electrodes to fabricate a two-layer $3.5mm{\times}3.5mm$ device. This layered structure was designed and fabricated to increase the output and displacement of the actuator at low driving voltages. In addition, a laser vibrometer and piezoelectric force microscope were used to analyze the device's vibration characteristics over the range of ~200~4,200 Hz. The on-off characteristics were confirmed at a frequency of 40 Hz.

비납계 BCTZ 압전세라믹과 압전폴리머로 제작된 하이브리드 나노복합체 기반의 플렉서블 에너지 하베스팅 소자 (Flexible Energy Harvesting Device based on Hybrid Piezoelectric Nanocomposite made of Lead-Free BCTZ Ceramic and Piezo-polymer)

  • 박성철;이재훈;김연규;박귀일
    • 한국전기전자재료학회논문지
    • /
    • 제35권1호
    • /
    • pp.72-79
    • /
    • 2022
  • Piezoelectric energy harvesting technologies, which can be used to convert the electricity from the mechanical energy, have been developed in order to assist or power the wearable electronics. To realize non-toxic and biocompatible electronics, the lead-free (Ba0.85Ca0.15)(Ti0.90Zr0.10)O3 (BCTZ) nanoparticles (NPs) are being studied with a great attention as flexible energy harvesting device. Herein, piezoelectric hybrid nanocomposites were fabricated using BCTZ NPs-embedded poly(vinylidene fluoride-trifluoroethylene) [P(VDF-TrFE)] matrix to improve the performance of flexible energy harvester. Output performance of the fabricated energy device was investigated by the well-optimized measurement system during the periodically bending and releasing motions. The generated open-circuit voltage and the short-circuit current of the piezoelectric hybrid nanocomposite-based energy harvester reached up to ~15 V and ~1.1 ㎂, respectively; moreover, the instantaneous power of 3.5 ㎼ is determined from load voltage and current at the external load of 20 MΩ. This research is expected to cultivate a new approach to high-performance wearable self-powering electronics.

강유전체 고분자의 음의 압전 물성 및 상공존경계(MPB)에 대한 고찰 (Perspective on Ferroelectric Polymers Presenting Negative Longitudinal Piezoelectric Coefficient and Morphotropic Phase Boundary)

  • 임성빈;부상돈;정창규
    • 한국전기전자재료학회논문지
    • /
    • 제35권6호
    • /
    • pp.523-546
    • /
    • 2022
  • Morphotropic phase boundary (MPB), which is a special boundary that separates two or multiple different phases in the phase diagram of some ferroelectric ceramics, is an important concept in identifying physics that includes piezoelectric responses. MPB, which had not been discovered in organic materials until recently, was discovered in poly(vinylidene fluoride-co-trifluoroethylene (P(VDF-TrFE)), resulting from a molecular approach. The piezoelectric coefficient of P(VDF-TrFE) in this MPB region was achieved up to -63.5 pC N-1, which is about two times as large as the conventional value of -30 pC N-1 of P(VDF-TrFE). An order-disorder arrangement greatly affects the rise of the piezoelectric effect and the ferroelectric, paraelectric and relaxor ferroelectric of P(VDF-TrFE), so the arrangement and shape of the polymer chain is important. In this review, we investigate the origin of negative longitudinal piezoelectric coefficients of piezoelectric polymers, which is definitely opposite to those of common piezoelectric ceramics. In addition to the mainly discussed issue about MPB behaviors of ferroelectric polymers, we also introduce the consideration about polymer chirality resulting in relaxor ferroelectric properties. When the physics of ferroelectric polymers is unveiled, we can improve the piezoelectric and pyroelectric properties of ferroelectric polymers and contribute to the development of next-generation sensor, energy, transducer and actuator applications.