DOI QR코드

DOI QR Code

Flexible Energy Harvesting Device based on Hybrid Piezoelectric Nanocomposite made of Lead-Free BCTZ Ceramic and Piezo-polymer

비납계 BCTZ 압전세라믹과 압전폴리머로 제작된 하이브리드 나노복합체 기반의 플렉서블 에너지 하베스팅 소자

  • Park, Sung Cheol (Department of Materials Science and Metallurgical Engineering, School of Materials Science and Engineering, Kyungpook National University (KNU)) ;
  • Lee, Jae Hoon (Department of Materials Science and Metallurgical Engineering, School of Materials Science and Engineering, Kyungpook National University (KNU)) ;
  • Kim, Yeon-gyu (Department of Materials Science and Metallurgical Engineering, School of Materials Science and Engineering, Kyungpook National University (KNU)) ;
  • Park, Kwi-Il (Department of Materials Science and Metallurgical Engineering, School of Materials Science and Engineering, Kyungpook National University (KNU))
  • 박성철 (경북대학교 신소재공학부 금속신소재공학전공) ;
  • 이재훈 (경북대학교 신소재공학부 금속신소재공학전공) ;
  • 김연규 (경북대학교 신소재공학부 금속신소재공학전공) ;
  • 박귀일 (경북대학교 신소재공학부 금속신소재공학전공)
  • Received : 2021.10.12
  • Accepted : 2021.10.13
  • Published : 2022.01.01

Abstract

Piezoelectric energy harvesting technologies, which can be used to convert the electricity from the mechanical energy, have been developed in order to assist or power the wearable electronics. To realize non-toxic and biocompatible electronics, the lead-free (Ba0.85Ca0.15)(Ti0.90Zr0.10)O3 (BCTZ) nanoparticles (NPs) are being studied with a great attention as flexible energy harvesting device. Herein, piezoelectric hybrid nanocomposites were fabricated using BCTZ NPs-embedded poly(vinylidene fluoride-trifluoroethylene) [P(VDF-TrFE)] matrix to improve the performance of flexible energy harvester. Output performance of the fabricated energy device was investigated by the well-optimized measurement system during the periodically bending and releasing motions. The generated open-circuit voltage and the short-circuit current of the piezoelectric hybrid nanocomposite-based energy harvester reached up to ~15 V and ~1.1 ㎂, respectively; moreover, the instantaneous power of 3.5 ㎼ is determined from load voltage and current at the external load of 20 MΩ. This research is expected to cultivate a new approach to high-performance wearable self-powering electronics.

Keywords

Acknowledgement

본 연구는 2021년도 정부(교육부, 과학기술정보통신부)의 재원으로 한국연구재단의 지원(No.2019R1I1A2A01057073, No.2021R1A4A2001658)을 받아 수행되었습니다.

References

  1. L. M. Swallow, J. K. Luo, E. Siores, I. Patel, and D. Dodds, Smart Mater. Struct., 17, 025017 (2008). [DOI: https://doi.org/10.1088/0964-1726/17/2/025017]
  2. C. Erdmier, J. Hatcher, and M. Lee, J. Med. Eng. Technol., 40, 141 (2016). [DOI: https://doi.org/10.3109/03091902.2016.1153738]
  3. M. Mardonova and Y. Choi, Energies, 11, 547 (2018). [DOI: https://doi.org/10.3390/en11030547]
  4. Z. L. Wang and W. Wu, Angew. Chem. Int. Ed., 51, 11700 (2012). [DOI: https://doi.org/10.1002/anie.201201656]
  5. C. Dagdeviren, Z. Li, and Z. L. Wang, Annu. Rev. Biomed. Eng., 19, 85 (2017). [DOI: https://doi.org/10.1146/annurev-bioeng-071516-044517]
  6. Y. Qi and M. C. McAlpine, Energy Environ. Sci., 3, 1275 (2010). [DOI: https://doi.org/10.1039/c0ee00137f]
  7. U. Khan, R. Hinchet, H. Ryu, and S. W. Kim, APL Mater., 5,073803 (2017). [DOI: https://doi.org/10.1063/1.4979954]
  8. D. Choi, M. Y. Choi, W. M. Choi, H. J. Shin, H. K. Park, J. S. Seo, J. Park, S. M. Yoon, S. J. Chae, Y. H. Lee, S. W. Kim, J. Y. Choi, S. Y. Lee, and J. M. Kim, Adv. Mater., 22, 2187 (2010). [DOI: https://doi.org/10.1002/adma.200903815]
  9. C. K. Jeong, C. Baek, A. I. Kingon, K. I. Park, and S. H. Kim, Small, 14, 1704022 (2018). [DOI: https://doi.org/10.1002/smll.201704022]
  10. J. Li and X. Wang, APL Mater., 5, 073801 (2017). [DOI: https://doi.org/10.1063/1.4978936]
  11. F. Ali, W. Raza, X. Li, H. Gul, and K. H. Kim, Nano Energy, 57, 879 (2019). [DOI: https://doi.org/10.1016/j.nanoen.2019.01.012]
  12. G. T. Hwang, M. Byun, C. K. Jeong, and K. J. Lee, Adv. Healthcare Mater., 4, 646 (2015). [DOI: https://doi.org/10.1002/adhm.201400642]
  13. K. I. Park, S. Xu, Y. Liu, G. T. Hwang, S.J.L. Kang, Z. L. Wang, and K. J. Lee, Nano Lett., 10, 4939 (2010). [DOI: https://doi.org/10.1021/nl102959k]
  14. K. I. Park, J. H. Son, G. T. Hwang, C. K. Jeong, J. Ryu, M. Koo, I. Choi, S. H. Lee, M. Byun, Z. L. Wang, and K. J. Lee, Adv. Mater., 26, 2514 (2014). [DOI: https://doi.org/10.1002/adma.201305659]
  15. S. Xu, Y. W. Yeh, G. Poirier, M. C. McAlpine, R. A. Register, and N. Yao, Nano Lett., 13, 2393 (2013). [DOI: https://doi.org/10.1021/nl400169t]
  16. C. K. Jeong, K. I. Park, J. Ryu, G. T. Hwang, and K. J. Lee, Adv. Funct. Mater., 24, 2620 (2014). [DOI: https://doi.org/10.1002/adfm.201303484]
  17. Q. Yang, D. Wang, M. Zhang, T. Gao, H. Xue, Z. Wang, and Z. Xiong, J. Alloys Compd., 688, 1066 (2016). [DOI: https://doi.org/10.1016/j.jallcom.2016.07.131]
  18. K. I. Park, S. B. Bae, S. H. Yang, H. I. Lee, K. Lee, and S. J. Lee, Nanoscale, 6, 8962 (2014). [DOI: https://doi.org/10.1039/c4nr02246g]
  19. W. Li, Z. Xu, R. Chu, P. Fu, and G. Zang, J. Am. Ceram. Soc., 93, 2942 (2010). [DOI: https://doi.org/10.1111/j.1551-2916.2010.03907.x]
  20. Y. Zhang, J. Glaum, C. Groh, M. C. Ehmke, J. E. Blendell, K. J. Bowman, and M. J. Hoffman, J. Am. Ceram. Soc., 97, 2885 (2014). [DOI: https://doi.org/10.1111/jace.13047]
  21. G. Liu, S. Zhang, W. Jiang, and W. Cao, Mater. Sci. Eng., 89, 1 (2015). [DOI: https://doi.org/10.1016/j.mser.2015.01.002]
  22. S. Ye, J. Fuh, and L. Lu, J. Alloys Compd., 541, 396 (2012). [DOI: https://doi.org/10.1016/j.jallcom.2012.06.084]
  23. G. H. Haertling, J. Am. Ceram. Soc., 82, 797 (1999). [DOI: https://doi.org/10.1111/j.1151-2916.1999.tb01840.x]
  24. H. Nagata, M. Yoshida, Y. Makiuchi, and T. Takenaka, Jpn. J. Appl. Phys., 42, 7401 (2003). [DOI: https://doi.org/10.1143/JJAP.42.7401]
  25. W. Wu, L. Cheng, S. Bai, W. Dou, Q. Xu, Z. Wei, and Y. Qin, J. Mater. Chem. A, 1, 7332 (2013). [DOI: https://doi.org/10.1039/c3ta10792b]
  26. L. Cheng, M. Yuan, L. Gu, Z. Wang, Y. Qin, T. Jing, and Z. L. Wang, Nano Energy, 15, 598 (2015). [DOI: https://doi.org/10.1016/j.nanoen.2015.05.003]
  27. Y. Zhang, J. Glaum, M. C. Ehmke, K. J. Bowman, J. E. Blendell, and M. J. Hoffman, J. Am. Ceram. Soc., 99, 1287 (2016). [DOI: https://doi.org/10.1111/jace.14103]
  28. C. Baek, J. H. Yun, J. E. Wang, C. K. Jeong, K. J. Lee, K. I. Park, and D. K. Kim, Nanoscale, 8, 17632 (2016). [DOI: https://doi.org/10.1039/c6nr05784e]
  29. J. Nunes-Pereira, V. Sencadas, V. Correia, J. G. Rocha, and S. Lanceros-Mendez, Sens. Actuators, A., 196, 55 (2013). [DOI: https://doi.org/doi:10.1016/j.sna.2013.03.023]
  30. T. Siponkoski, M. Nelo, J. Palosaari, J. Perantie, M. Sobocinski, J. Juuti, and H. Jantunen, Composites, Part B, 80, 217 (2016). [DOI: https://doi.org/10.1016/j.compositesb.2015.05.018]
  31. S. S. Ham, G. J. Lee, D. Y. Hyeon, Y. G. Kim, Y. W. Lim, M. K. Lee, J. J. Park, G. T. Hwang, S. Yi, C. K. Jeong, and K. I. Park, Composites, Part B, 212, 108705 (2021). [DOI: https://doi.org/10.1016/j.compositesb.2021.108705]
  32. Y. J. Kwon, D. Y. Hyeon, and K. I. Park, Korean J. Mater. Res., 29, 371 (2019). [DOI: https://doi.org/10.3740/MRSK.2019.29.6.371]
  33. O. Jongprateep, T. Khongnakhon, P. Jantaratana, and S. Rugthaicharoencheep, Appl. Mech. Mater., 575, 231 (2014). [DOI: https://doi.org/10.4028/www.scientific.net/AMM.575.231]
  34. V. S. Puli, D. K. Pradhan, D. B. Chrisey, M. Tomozawa, G. L. Sharma, J. F. Scott, and R. S. Katiyar, J. Mater. Sci., 48, 2151 (2013). [DOI: https://doi.org/10.1007/s10853-012-6990-1]
  35. Y. Liu, H. Aziguli, B. Zhang, W. Xu, W. Lu, J. Bernholc, and Q. Wang, Nature, 562, 96 (2018). [DOI: https://doi.org/10.1038/s41586-018-0550-z]
  36. R. Gregorio Jr. and M. M. Botta, J. Polym. Sci., Part B: Polym. Phys., 36, 403 (1998). [DOI: https://doi.org/10.1002/(SICI)1099-0488(199802)36:3<403::AID-POLB2>3.0.CO;2-S]
  37. E. El. Shafee, and S. M. Behery, Mater. Chem. Phys., 132, 740 (2012). [DOI: https://doi.org/10.1016/j.matchemphys.2011.12.005]
  38. M. Arous, H. Hammami, M. Lagache, and A. Kallel, J. Non-Cryst. Solids, 353, 4428 (2007). [DOI: https://doi.org/10.1016/j.jnoncrysol.2007.02.076]