• 제목/요약/키워드: Poly(p-phenylenevinylene)

검색결과 30건 처리시간 0.023초

Synthesis and Luminescent Properties of Tetrafluorophenyl Containing Poly(p-phenylenevinylene) Derivatives

  • Ahn, Taek
    • Transactions on Electrical and Electronic Materials
    • /
    • 제16권3호
    • /
    • pp.162-167
    • /
    • 2015
  • To investigate the effect of fluoro groups substitution on poly(p-phenylenevinylene) derivatives, poly(2,3,5,6- tetrafluoro-p-phenylenevinylene-alt-N-ethylhexyl-3,6-carbazolevinylene), PCTF-PPV, and poly[2,3,5,6-tetrafluoro-p-phenylenevinylene-alt-2-methoxy-5-(2-ethylhexyloxy)-p-phenylenevinylene], PMTF-PPV, were synthesized by the well-known Wittig condensation polymerization process. To compare the influences of fluoro groups, no fluoro groups containing model polymers, poly(p-phenylenevinylene-alt-N-ethylhexyl-3,6-carbazolevinylene), PCPPPV and poly[p-phenylenevinylene-alt-2-methoxy-5-(2-ethylhexyloxy)-p-phenylenevinylene], p-PMEH-PPV, were also synthesized. The resulting polymers were completely soluble in common organic solvents and exhibited good thermal stability up to 300℃. The polymers showed UV-visible absorbance and photoluminescence (PL) in the ranges of 259~452 nm and 500~580 nm, respectively. The tetrafluorophenyl containing PCTF-PPV and PMTF-PPV showed relatively red-shifted PL peaks at 521 nm and 580 nm, respectively, compared to that of non-fluoro groups containing polymers (PCP-PPV: 500 nm and p-PMEH-PPV: 539 nm). The single-layer light-emitting diode was fabricated in a configuration of ITO/polymer/Al. Electroluminescene (EL) emissions of PCP-PPV, PCTF-PPV, p-PMEH-PPV and PMTF-PPV were shown at 507, 524, 556, and 616 nm, respectively.

Synthesis and Characterization of New Orange-Red Light-Emitting PPV Derivatives With Bulky Cyclohexyl Groups

  • Ko, Seung-Won;Jung, Byung-Jun;Cho, Nam-Sung;Shim, Hong-Ku
    • Bulletin of the Korean Chemical Society
    • /
    • 제23권9호
    • /
    • pp.1235-1267
    • /
    • 2002
  • A series of 2,5-dialkoxy substituted poly(1,4-phenylenevinylene) derivatives containing a rigid and bulky cyclohexyl group in the side chain, poly[2-(7-cyclohexylheptyloxy)-5-butoxy-1,4-phenylenevinylene] (PBCyHpPV), Poly[2-(6-cyclohexylmethoxyhexyloxy)-5-butoxy-1,4-phenylenevinylene] (PBCyHxPV), Poly[2,5-di-(6-cyclohexylmethoxy-hexyloxy)-1,4-phenylenevinylene] (PDCyHxPV) were synthesized via the Gilch polymerization. The synthesized polymers were soluble in common organic solvents and showed good thermal stability up to $370^{\circ}C$. The maximum absorption of PBCyHpPV, PBCyHxPV and PDCyHxPV as thin films was at 513 ㎚, 515 ㎚, 511 ㎚, respectively. Photoluminescence maximum emission of above polymers appeared at 590 ㎚, 597 ㎚, 590 ㎚, respectively. The electroluminescence (EL) maxima of the polymers appeared around 585-590 ㎚, and also showed another shoulder around 630 ㎚ strongly. PDCyHxPV showed the highest EL efficiency and EL power than those of other polymers due to the dilution effect of the two rigid and bulky cyclohexyl groups.

Synthesis and Characteristics of New Poly(p-phenylenevinylene) with Bulky t-Octylphenoxy Group

  • Kim, Yun-Hi;Lee, Hyun-Ouk;Jung, Sung-Ouk;Kwon, Soon-Ki
    • Macromolecular Research
    • /
    • 제11권3호
    • /
    • pp.194-197
    • /
    • 2003
  • A new 2,5-di(t-octylphenoxy) group substituted poly(p-phenylenevinylene) derivative was synthesized by Gilch polymerization. The obtained polymer was characterized by NMR, FT-IR, and chemical analysis and completely soluble in common organic solvents. The polymer showed good thermal stability with T$_{g}$ of 105$^{\circ}C$. The polymer dissolved in chloroform showed maximum emission at 514 nm with a shoulder peak at around 560 nm. The EL spectrum of the ITO/PEDOT/TOP-PPV/Al device was observed maximum emission at 545 nm with a shoulder peak at around 585 nm.m.

Novel Poly(p-phenylenevinylene)s Derivatives with CF3-Phenyl Substituent for Light-Emitting Diodes

  • Jin, Young-Eup;Kim, Jin-Woo;Park, Sung-Heum;Lee, Kwang-Hee;Suh, Hong-Suk
    • Bulletin of the Korean Chemical Society
    • /
    • 제26권5호
    • /
    • pp.795-801
    • /
    • 2005
  • New PPV derivatives which contain electron-withdrawing trifluoromethyl ($CF_3$) group, poly[2-(2-ethylhexyloxy)-5-(4-trifluoro methylphenyl)-1,4-phenylenevinylene] (EH$CF_3$P-PPV), and poly[2-(2-ethylhexyloxy)-5-(3,5-bis(trifluoromethyl)-phenyl)-1,4-phenylenevinylene] (EHB$CF_3$P-PPV), have been synthesized by GILCH polymerization. As the result of the introduction of the electron-withdrawing $CF_3$ group to the phenyl substituent, the LUMO and HOMO energy levels of EH$CF_3$P-PPV (2.8, 5.1 eV) and EHB$CF_3$P-PPV (3.0, 5.3 eV) were lower than those of known poly[2-(2-ethylhexyloxy)-5-phenyl-1,4-phenylenevinylene] (EHP-PPV) (2.6, 4.9 eV). These polymers have been used as the electroluminescent (EL) layers in double layer lightemitting diodes (LEDs) (ITO/PEDOT/polymer/Al). EH$CF_3$P-PPV, and EHB$CF_3$P-PPV show maximum photoluminescence (PL) peaks at ${\lambda}_{max}$ = 550, 539 nm, and maximum EL peak at ${\lambda}_{max}$ = 545, 540 nm, respectively. The current-voltage-luminance (I-V-L) characteristics of the polymers show that turn-on voltages of EH$CF_3$P-PPV and EHB$CF_3$P-PPV are around 4.0 and 3.5 V, respectively.

Synthesis and Characterization of Fluorescent Poly(aryl ether thiadiazole)s and Poly(aryl ether oxadiazole)s

  • Gyesang Yoo;Hong, Sung-Il;Hwang, Seung-Sang;Lee, Jaehwan
    • 한국섬유공학회:학술대회논문집
    • /
    • 한국섬유공학회 1998년도 가을 학술발표회논문집
    • /
    • pp.25-28
    • /
    • 1998
  • Since the first report on poly(p-phenylenevinylene), the electroluminescent properties of namy conjugated polymers such as poly(p-phenylenevinylene) (PPV), poythiophene (PT), poly(p-phenylene) (PPP), and polyfluorene (PF) have been investigated because of their potential for use in display technology However, in the application of polymer light-emitting diodes (PLEDs), there are yet three fundamental issues to be considered: (1) full color capability, (2) emission efficiency, (3) stability (lifetime). (omitted)

  • PDF

열경화가 가능한 poly(p-phenylenevinylene)계 정공전달 물질의 합성 및 특성 (Synthesis and Characterization of Thermally Cross-linkable Hole Transporting Material Based on Poly(p-phenylenevinylene) Derivative)

  • 최지영;이봉;김주현
    • 공업화학
    • /
    • 제19권3호
    • /
    • pp.299-303
    • /
    • 2008
  • 열경화가 가능한 PPV유도체인 poly[(2,5-dimethoxy-1,4-phenylenevinylene)-alt-(1,4-phenylenevinylene)] (Cross-PPV)를 Heck coupling 반응을 이용하여 합성하였다. Cross-PPV 박막은 $200^{\circ}C$에서 경화 시키면 일반적인 유기용매에 용해되지 않는 불용성의 고분자 박막이 된다. 열경화 전 후의 Cross-PPV의 구조는 FT-IR로 확인하였으며 구조의 차이는 크지 않았다. 경화된 Cross-PPV는 일반적인 유기용매에 대하여 내용매성이 강하다. 순환전압전류법과 흡수분광법으로 측정한 경화된 Cross-PPV의 호모 및 루모 에너지 준위는 각각 -5.11 eV와 -2.56 eV으로 ITO로 부터의 정공주입장벽(hole injection barrier)이 작아(약 0.1 eV) 정공주입층으로 효과적으로 사용 할 수 있다. 호모 및 루모 에너지 준위가 각각 -5.44 eV, -3.48 eV인 poly(1,4-phenylenevinylene-(4-dicyanomethylene-4H-pyran)-2,6-vinylene-1,4-phenylene-vinylene-2,5-bis(dodecyloxy)-1,4-phenylenevinylene) (PM-PPV)을 발광층으로 사용하여 두층의 구조(bilayer structure)를 갖는 소자(ITO/crosslinked Cross-PPV/PM-PPV/Al)를 제작, 특성을 평가한 결과 최대 효율은 0.024 cd/A, 최대 발광세기는 $45cd/m^2$으로 단층형 소자(ITO/PM-PPV/Al)(최대 효율 = 0.003 cd/A, 최대 발광세기 = $3cd/m^2$)에 비하여 매우 월등한 성능을 나타냄을 확인하였다. 또한 두층의 구조를 가지는 다층형 소자의 발광스펙트럼은 단층형 소자의 발광 스펙트럼과 동일하다. 이러한 사실들로 보아 ITO 및 Al에서 주입된 전자는 모두 발광층인 PM-PPV층에서 재결합(recombination)되어 여기자(exciton)가 형성되는 것으로 사료된다.

주파수 의존성에 따른 고분자 LED의 유전 분산 거동에 관한 연구 (AC dielectric response of poly(p-phenylenevinylene) light emitting devices)

  • 이철의;김세헌;장재원;김상우
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2000년도 추계학술대회 논문집
    • /
    • pp.149-152
    • /
    • 2000
  • AC impedance measurements on poly-p-phenylenevinylene (PPV) LEDs in the frequency range between 10 Hz and 10$\^$6/ Hz were carried out. The complex-plane impedance spectra indicate that PPV devices can be represented by equivalent circuits that corresponds to the bulk and interfacial regions at high and low frequencies, respectively. As a result of complex impedance analysis through the separation of bulk and interfacial region impedances, increase of forward bias in Al/PPV/ITO devices gave rise to relative decrease of the interfacial region impedance. Above the electric field of 10$\^$6/ V/cm the PPV device showed a space charge limited current (SCLC) conduction. The dependence of the transport mechanism and dielectric properties on the applied bias voltage is discussed.

  • PDF

EL Properties of PFV and PPV Copolymers

  • Hwang, Do-Hoon;Lee, Jong-Don;Kang, Jong-Min;Lee, Chang-Hee;Jin, Sung-Ho
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2003년도 International Meeting on Information Display
    • /
    • pp.877-880
    • /
    • 2003
  • A new class of light-emitting poly(p-phenylenevinylene) (PPV) derivatives. poly(9,9-di-n-octyfluorenyl- 2,7-vinylene) (PFV) and its PPV copolymers, poly[(9,9-di-n-octylfluorenyl-2,7-vinylene)-co-(1,4-phenylenevinylene)]s [Poly(FV-co-PV)s] was synthesized through Gilch polymerization, and their light-emitting properties were investigated. The copolymers showed almost the same UV absorption and PL emission as the PFV homopolymer, regardless of copolymer composition. Interestingly, the EL spectra of these devices were similar to the PL spectra of the corresponding polymer film. However, the EL devices constructed from the poly(FV-co-PV)s showed 10 times higher efficiency than the devices constructed from the PFV homopolymer. This higher efficiency is possibly a result of better charge carrier balance in the copolymer systems due to the lower HOMO level (${\sim}5.5$ eV) of the poly(FV-co-PV)s in comparison to the PFV (${\sim}5.7$ eV).

  • PDF

Poly(p-phenylenevinylene) (PPV) LB 막의 제작 및 특성 연구 (Study on preparation and characterization of PPV LB films.)

  • 김재환;김경수;강우형;손미화;김영찬;김영관;손병청
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1994년도 추계학술대회 논문집 학회본부
    • /
    • pp.219-221
    • /
    • 1994
  • Oil-soluble poly(p-phenylene(1-methoxyethylene)), as a precursor of poly(p-phenylenevinylene) (PPV), was synthesized add identified with NMR and FT-IR spectroscopy. The PPV films were prepared by PPV precursor films with a thermal treatment at $250^{\circ}C$ under vacuum, where the PPV precursor films wets formed on various substrates by using Langmuir-Blodgett(LB) method. The characterization of these films was carried out by FT-IR spectroscopy, UV-VIS absorption spectroscopym, and photoluminescence (PL). Atomic Force Microscopy (AFM) has been used to investigate He surface morphology of PPV films.

  • PDF