DOI QR코드

DOI QR Code

Novel Poly(p-phenylenevinylene)s Derivatives with CF3-Phenyl Substituent for Light-Emitting Diodes

  • Jin, Young-Eup (Department of Chemistry and Center for Plastic Information System, Pusan National University) ;
  • Kim, Jin-Woo (Department of Chemistry and Center for Plastic Information System, Pusan National University) ;
  • Park, Sung-Heum (Department of Physics and Center for Plastic Information System, Pusan National University) ;
  • Lee, Kwang-Hee (Department of Physics and Center for Plastic Information System, Pusan National University) ;
  • Suh, Hong-Suk (Department of Chemistry and Center for Plastic Information System, Pusan National University)
  • Published : 2005.05.20

Abstract

New PPV derivatives which contain electron-withdrawing trifluoromethyl ($CF_3$) group, poly[2-(2-ethylhexyloxy)-5-(4-trifluoro methylphenyl)-1,4-phenylenevinylene] (EH$CF_3$P-PPV), and poly[2-(2-ethylhexyloxy)-5-(3,5-bis(trifluoromethyl)-phenyl)-1,4-phenylenevinylene] (EHB$CF_3$P-PPV), have been synthesized by GILCH polymerization. As the result of the introduction of the electron-withdrawing $CF_3$ group to the phenyl substituent, the LUMO and HOMO energy levels of EH$CF_3$P-PPV (2.8, 5.1 eV) and EHB$CF_3$P-PPV (3.0, 5.3 eV) were lower than those of known poly[2-(2-ethylhexyloxy)-5-phenyl-1,4-phenylenevinylene] (EHP-PPV) (2.6, 4.9 eV). These polymers have been used as the electroluminescent (EL) layers in double layer lightemitting diodes (LEDs) (ITO/PEDOT/polymer/Al). EH$CF_3$P-PPV, and EHB$CF_3$P-PPV show maximum photoluminescence (PL) peaks at ${\lambda}_{max}$ = 550, 539 nm, and maximum EL peak at ${\lambda}_{max}$ = 545, 540 nm, respectively. The current-voltage-luminance (I-V-L) characteristics of the polymers show that turn-on voltages of EH$CF_3$P-PPV and EHB$CF_3$P-PPV are around 4.0 and 3.5 V, respectively.

Keywords

References

  1. Burroughes, J. H.; Bradley, D. D. C.; Brown, A. R.; Marks, R. N.; Mackay, K.; Friend, R. H.; Burn, P. L.; Holmes, A. B. Nature (London) 1990, 347, 539 https://doi.org/10.1038/347539a0
  2. Kraft, A.; Grimsdale, A. C.; Holmes, A. B. Angew. Chem., Int. Ed. 1998, 37, 402 https://doi.org/10.1002/(SICI)1521-3773(19980302)37:4<402::AID-ANIE402>3.0.CO;2-9
  3. Friend, R. H.; Gymer, R. W.; Holmes, A. B.; Burroughes, J. H.; Marks, R. N.; Taliani, C.; Bradley, D. D. C.; Santos, D. A.; Bredas, J. L.; Logdlund, M.; Salameck, W. R. Nature (London) 1999, 357, 121 https://doi.org/10.1038/357121a0
  4. Shim, H. K.; Jin, J. I. Adv. Polym. Sci. 2002, 158, 194
  5. Greenham, N. C.; Moratti, S. C.; Bradley, D. D. C.; Friend, R. H.; Holmes, A. B. Nature (London) 1993, 365, 628 https://doi.org/10.1038/365628a0
  6. Brown, A. R.; Bradley, D. D. C.; Burroughes, J. H.; Friend, R. H.; Greenman, N. C.; Burn, P. L.; Holmes, A. B. Appl. Phys. Lett. 1992, 61, 2793 https://doi.org/10.1063/1.108094
  7. Burn, P. L.; Grice, A. W.; Jajbakhsh, A.; Bradley, D. D. C.; Thomas, A. C. Adv. Mater. 1997, 9, 1171 https://doi.org/10.1002/adma.19970091510
  8. Bredas, J. L.; Heeger, A. J. Chem. Phys. Lett. 1994, 54, 401
  9. Ko, S. W.; Jung, B.-J.; Ahn, T.; Shim, H.-K. Macromolecules 2002, 35, 6217 https://doi.org/10.1021/ma020285v
  10. Sarnecki, G. J.; Friend, R. H.; Moratti, S. C. Synth. Met. 1995, 69, 545 https://doi.org/10.1016/0379-6779(94)02561-C
  11. Gurge, R. M.; Sarker, A.; Laht, P. M.; Hu, B.; Karasz, F. E. Macromolecules 1996, 29, 4287 https://doi.org/10.1021/ma960104n
  12. Gurge, R. M.; Sarker, A.; Laht, P. M.; Hu, B.; Karasz, F. E. Macromolecules 1997, 30, 8286 https://doi.org/10.1021/ma970693c
  13. Jin, J. I.; Kim, J. C.; Shim, H. K. Macromolecules 1992, 25, 5519 https://doi.org/10.1021/ma00046a060
  14. Benjamin, I.; Faraggi, E. Z.; Avny, Y.; Davidov, D.; Neumann, R. Chem. Mater. 1996, 8, 352 https://doi.org/10.1021/cm950347e
  15. Lahti, P. M.; Sarker, A.; Garay, R. O.; Lenz, R. W.; Karasz, F. E. Polymer 1994, 35, 1312 https://doi.org/10.1016/0032-3861(94)90029-9
  16. Grimsdale, A. C.; Cacialli, F.; Gruner, J.; Lix, C.; Holmes, A. B.; Moratti, S. C.; Friend, R. H. Synth. Met. 1996, 76, 165 https://doi.org/10.1016/0379-6779(95)03444-O
  17. Boardman, F. H.; Grice, A. W.; Ruther, M. G.; Sheldon, T. J.; Bradley, D. D. C.; Burn, P. L. Macromolecules 1999, 32, 111 https://doi.org/10.1021/ma981309u
  18. Broms, P.; Fahlman, M.; Xing, K. Z.; Salaneck, W. R.; Dannetun, P.; Cornil, J.; dos Santos, D. A.; Bredas, J. L.; Moratti, S. C.; Holmes, A. B.; Friend, R. H. Synth. Met. 1994, 67, 93 https://doi.org/10.1016/0379-6779(94)90017-5
  19. Logdlund, M.; Brédas, J. L. J. Chem. Phys. 1994, 101, 4357 https://doi.org/10.1063/1.467486
  20. Broms, P.; Birgersson, J.; Johansson, N.; Logdlund, M.; Salaneck, W. R. Synth. Met. 1995, 74, 179 https://doi.org/10.1016/0379-6779(95)03375-0
  21. Jin, Y.; Ju, J.; Kim, J.; Lee, S.; Kim, J. Y.; Park, S. H.; Son, S. M.; Jin, S. H.; Lee, K.; Suh, H. Macromolecules 2003, 36, 6970 https://doi.org/10.1021/ma025862u
  22. Lux, A.; Holmes, A. B.; Cervini, J. E.; Davies, J. E.; Moratti, S. C.; Grüner, J.; Cacialli, F.; Friend, R. H. Synth. Met. 1997, 84, 293 https://doi.org/10.1016/S0379-6779(97)80757-6
  23. Jin, Y.; Kim, J.; Lee, S.; Kim, J. Y.; Park, S. H.; Lee, K.; Suh, H. Macromolecules 2004, 37, 6711 https://doi.org/10.1021/ma0493022
  24. Burke, W. J.; Bishop, J. L.; Warburton, J. A. J. Org. Chem. 1962, 27, 4003 https://doi.org/10.1021/jo01058a059
  25. Sato, M.; Maruyama, G.; Tanemura, A. J. Organomet. Chem. 2002, 655, 23 https://doi.org/10.1016/S0022-328X(02)01407-9
  26. Becker, H.; Spreitzer, H.; Inbrom, K.; Kreuder, W. Macromolecules 1999, 32, 4925 https://doi.org/10.1021/ma990347q
  27. Pommerehne, J.; Vestweber, H.; Guss, W.; Mahrt, R. F.; Bassler, H.; Porsch, M.; Daub, J. Adv. Mater. 1995, 7, 551 https://doi.org/10.1002/adma.19950070608
  28. Leeuw, D. M.; Simenon, M. J.; Brown, A. R.; Einerhand, R. E. F. Synth. Met. 1997, 87, 53 https://doi.org/10.1016/S0379-6779(97)80097-5

Cited by

  1. Synthesis and Characterization of Novel Conjugated Polymer with Thiophene and Benzimidazole vol.32, pp.spc8, 2011, https://doi.org/10.5012/bkcs.2011.32.8.3045
  2. Morphology and spectral properties of thin films of benzoxazole derivatives of biphenyl vol.74, pp.3, 2007, https://doi.org/10.1007/s10812-007-0054-3
  3. Electroluminescent properties of dibenzoxazolyl biphenyl molecules vol.74, pp.5, 2007, https://doi.org/10.1007/s10812-007-0121-9
  4. Effect of Temperature and Oxygen on Luminescence Spectra and Polarization of Divinylbenzoxazolylbiphenyl Thin Films vol.18, pp.3-4, 2008, https://doi.org/10.1007/s10895-008-0325-2
  5. Synthesis and light-emitting properties of a novel π-conjugated poly[di(p-phenyleneethynylene)-alt- (p-phenylenecyanovinylene)] containingn-octyloxy side branches vol.108, pp.2, 2008, https://doi.org/10.1002/app.27293
  6. Effect of substituents in benzoxazole derivatives of biphenyl on the optical properties and photostability of their thin films vol.76, pp.4, 2009, https://doi.org/10.1007/s10812-009-9218-7
  7. Benzotrifluoromethyl group-substituted poly(para-phenylenevinylene): Effect on solubility, optical, and electronic properties pp.10974628, 2010, https://doi.org/10.1002/app.31528
  8. Synthesis and Properties of PCPP-Based Conjugated Polymers Containing Pendant Carbazole Units for LEDs vol.28, pp.12, 2005, https://doi.org/10.5012/bkcs.2007.28.12.2419
  9. Poly(p-phenylenevinylene)s Derivatives Containing a New Electron-Withdrawing CF3F4Phenyl Group for LEDs vol.29, pp.1, 2008, https://doi.org/10.5012/bkcs.2008.29.1.139