• 제목/요약/키워드: Pollutant gas removal

검색결과 40건 처리시간 0.048초

격리병실내 급배기구 위치에 따른 오염물 제거효율 비교 (Comparison of pollutant removal efficiency according to the locations of the supply and exhaust)

  • 원안나
    • 도시과학
    • /
    • 제9권2호
    • /
    • pp.13-20
    • /
    • 2020
  • The Recently, several countries have been affected by respiratory diseases, resulting in renewed research interest in their prevention and control. One such example was the 2015 outbreak of Middle East Respiratory Syndrome (MERS) in South Korea and COVID-19. In this study, we performed experiments and simulations based on concentration decay using CO2 as the tracer gas to elucidate the pollutant-removal efficiency for different inlet and exhaust locations and outdoor air-supply ratios. The wall inlet exhibited a higher pollutant-removal efficiency, owing to the upward movement of the air from the lower zone to the upper one. In conclusion, it is recommended that a total air-conditioning plan for isolation rooms be established as well as efficient system operation for pollutant removal and air-flow control to prevent the transmission of infections from the patients to others.

자계가 인가된 공기청정장치의 가스 제거 특성 (Gas Removal Characteristics of Air Clean System Applying a Magnetic Field)

  • 신수연;문재덕
    • 전기학회논문지
    • /
    • 제56권5호
    • /
    • pp.921-925
    • /
    • 2007
  • Gas removal characteristics of an air clean system, consisted of a filter and a nonthermal discharge plasma reactor with a magnetic field, have been investigated with emphasis on the enhancing gas removal efficiency of the applied magnetic field. It is found that the magnetic field influenced significantly to the corona discharge characteristics, decreasing the corona onset voltage and increasing the corona current. As a result, the proposed air clean system with the magnetic field showed the higher removal efficiency of the gas (e.g., trimethlyamine) than that of without the magnetic field. This would be because the magnetic field applied to the discharge plasma reactor of the air clean system can elevate the corona characteristics, and activate the generation of ozone, thus the removal efficiency of the gas was concurrently enhanced. This reveals that the proposed air clean system with the magnetic field could be used as an effective means of removal an indoor pollutant gas.

Effect of Contaminant Source Location on Indoor Air Quality

  • Lee, Hee-Kwan;Kim, Shin-Do
    • Journal of Korean Society for Atmospheric Environment
    • /
    • 제14권E호
    • /
    • pp.1-7
    • /
    • 1998
  • This paper presents an experimental study for understanding the indoor air quality in a room. A model room, which had a ceiling-mounted supply and a sidewall-mounted exhaust, was used to examine the effect of air exchange rate (AER) and contaminant source location (CSL) as a function of the elapsed time. A tracer gas method, using carbon monoxide tracer, gas analyzers, and a data acquisition system, was applied to study the ventilation air distribution and the tracer removal efficiency, so-called pollutant removal efficiency, in the model room. The experiment was composed of two parts; firstly the AER was varied to examine its effect on the ventilation air distribution and the ventilation effectiveness and secondly both AER and CSL were considered to determine their effect on the pollutant removal efficiency. It was found that the ventilation effectiveness in the model was proportional to AER but not linearly. It was also found that changing the CSL can improve the pollutant removal efficiency. In some cases, the efficiency improvement by increasing AER was achieved by simply changing CSL.

  • PDF

산성 및 유기성 가스의 동시제거를 위한 준건식 세정시스템의 적정 운전 조건 (Optimal Operation Condition of Spray Drying Sorber for Simultaneous Removal of Acidic and Organic Gaseous Pollutants)

  • 백경렬;구자공
    • 한국환경과학회지
    • /
    • 제10권1호
    • /
    • pp.59-64
    • /
    • 2001
  • The effect of major operating parameters in spray drying sorber(=SDS) for automatic control for the simultaneous removal of acidic and organic gaseous pollutants from solid waste incinerator was performed. The field experiment was carried out in pilot scale test for the quantification of major operating parameters of hydrophilic and the hydrophobic pollutants. The removal efficiencies of $SO_2$and HCI in the 5wt% slurry condition were being increased with the increase of the stoichiometric ration which is the molecular ratio of lime to the pollutant concentration, and with the decrease of inflow flue gas temperature in the pilot SDS reactor. The removal efficiency along the height of spray drying sorber was closely related to the temperature profile, and more than 90% of total removal efficiency was achieved in an absorption region. For the removal of acidic gas the optimum operating condition considering the economics and a stable operation is the 5wt% of slurry concentration, 1.2 of stoichiometric ratio and 25$0^{\circ}C$ of inflow flue gas temperature. For the organic gases of benzene and toluene the removal efficiencies were 20-60% which is much lower than that of acidic gas. The best removal efficiency was obtained at 1.5 of stoichiometric ratio and 25$0^{\circ}C$ of inflow flue gas temperature. The organic\`s removal efficiency along the height of spray drying sorber was quite different from that of acidic gas, that is, more than 60% of the total removal efficiency for benzene and 90% of the total removal for toluene were achieved in the dried adsorption region, which was formed at the lower or exit part of the reactor.

  • PDF

Ca(OH)2촉매를 이용한 플라즈마 반응에 의한 황산화물의 제거에 관한 연구 (A study of decomposition of sulfur oxides using Calcium hydroxide catalyst by plasma reactions)

  • 김다영;우인성;이선희;김도현;김병철
    • 대한안전경영과학회:학술대회논문집
    • /
    • 대한안전경영과학회 2013년 추계학술대회
    • /
    • pp.547-560
    • /
    • 2013
  • In this study, the air pollutant removal such as sulfur oxides was studied. A combination of the plasma discharge in the reactor by the reaction surface discharge reactor Calcium hydroxides catalytic reactor and air pollutants, hazardous gas SOx, changes in gas concentration, change in frequency, the thickness of the electrode, kinds of electrodes and the addition of simulated composite catalyst composed of a variety of gases, including decomposition experiments were performed by varying the process parameters. The experimental results showed the removal efficiency of 98% in the decomposition of sulfur oxides removal experiment when Calcium hydroxides catalysts and the tungsten(W) electrodes were used. It was increased 3% more than if you do not have the catalytic. If added to methane gas was added the removal efficiency increased decomposition.

  • PDF

광산화-활성탄 복합공정에 의한 B.T.X. 분해에 관한 연구 (A Study on the removal of B.T.X by UV Photooxidation-Activated Carbon)

  • 정창훈;배해룡
    • 한국환경과학회지
    • /
    • 제13권1호
    • /
    • pp.41-45
    • /
    • 2004
  • In this study, The decomposition of gas-phase Benzene and Toluene, Xylene in air streams by direct UV Photolysis, UV/TiO$_2$ and UV/TiO$_2$/A.C process was studied. The experiments were carried out under various UV light intensities and initial concentrations of B.T.X to investigate and compare the removal efficiency of the pollutant. B.T.X was determined by GC-FID of gas samples taken from the a glass sampling bulb which was located at reactor inlet and outlet by gas-tight syringe. From this study, the results indicate that UV/TiO$_2$/A.C system (photooxidation-photocatalytic oxidation-adsorption process) is ideal for treatment of B.T.X from the small workplace. Although the results needs more verifications, the methodology seems to be reasonable and can be applied for various workplace (laundry, gas station et al.).

슬릿 유전체 장벽을 갖는 선대 평판형 방전장치의 방전 및 오존 발생특성 (Discharge and Ozone Generation Characteristics of a Wire-Plate Discharge System with a Slit Barrier)

  • 문재덕;정재승
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제54권9호
    • /
    • pp.421-426
    • /
    • 2005
  • A wire-plate discharge system with a slit barrier has been proposed and investigated experimentally by focusing on the discharges on the slit barrier and ozone generation characteristics. This wire-plate discharge system with a slit barrier can generate an intensive corona discharges, and produce corona discharge twice, once from the corona wire electrode and second time from the surface and the slits of the slit dielectric barrier. As a result this propose wire-plate discharge system with the slit barrier can produce greatly increased ozone than without the slit barrier. This type of wire-plate discharge system with the slit barrier could be used for effective ozone generation as a means with retard to the removal of pollutant gas

광촉매와 조합된 코로나 방전 플라즈마 필터의 유해 가스 및 입자 제거 특성 (A Compact Pulse Corona Plasma System with Photocatalyst for an Air Conditioner)

  • 신수연;문재덕
    • 전기학회논문지
    • /
    • 제56권1호
    • /
    • pp.151-155
    • /
    • 2007
  • A compact discharge plasma system with a photocatalyst has been proposed and investigated experimentally for application to air conditioners. It was found that there was intense ultra violet radiation with high energy of 3.2 eV from the corona discharge due to the DC-biased pulse voltage applied on a wire. An electrophotochemical reaction took place apparently on the surfaces of the photocatalyst of $TiO_2$ irradiated ultra violet front the discharge plasma in the proposed plasma system. The proposed discharge plasma system with the photocatalyst of $TiO_2$ showed very high removal efficiency of VOCs by tile additional electrophotochemical reactions on the photocatalyst. The proposed discharge plasma system also showed very high removal efficiency of particles such as smokes, suspended bacteria, and pollen and mite allergens by the electrostatic precipitation part. This type of corona discharge plasma system with a photocatalyst can be used as an effective means of removing both indoor pollutant gases and particles including suspended allergens.

Pilot 규모 산성가스 제거공정 운전 특성 (Operation Characteristics of Pilot-scale Acid Gas Removal Process)

  • 이승종;류상오;정석우;윤용승
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2009년도 추계학술대회 논문집
    • /
    • pp.533-536
    • /
    • 2009
  • The gasification technology is a very flexible and versatile technology to produce a wide variety products such as electricity, steam, hydrogen, Fisher-Tropsch(FT) diesels, Dimethyl Ether(DME), methanol and SNG(Synthetic Natural Gas) with near-zero pollutant emissions. Gasification converts coal and other low-grade feedstocks such as biomass, wastes, residual oil, petroleum coke, etc. to a very clean and usable syngas. Syngas is produced from gasifier including CO, $H_2$, $CO_2$, $N_2$, particulates and smaller quantities of $CH_4$, $NH_3$, $H_2S$, COS and etc. After removing pollutants, syngas can be variously used in energy and environment fields. The pilot-scale coal gasification system has been operated since 1994 at Ajou University in Suwon, Korea. The pilot-scale gasification facility consists of the coal gasifier, the hot gas filtering system, and the acid gas removal (AGR) system. The acid gas such as $H_2S$ and COS is removed in the AGR system before generating electricity by gas engine and producing chemicals like Di-methyl Ether(DME) in the catalytic reactor. The designed operation temperature and pressure of the $H_2S$ removal system are below $50^{\circ}C$ and 8 kg/$cm^2$. The iron chelate solution is used as an absorbent. $H_2S$ is removed below 0.1 ppm in the H2S removal system.

  • PDF

강유전체층을 갖는 선대선 방편 플라즈마장치의 코로나 방전 및 오존발생 특성 (Corona Discharge and Ozone Generation Characteristics of a Wire-to-Wire Plasma Reactor with a Ferroelectric Pellet Layer)

  • 문재덕;신정민;한상옥
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제53권7호
    • /
    • pp.377-381
    • /
    • 2004
  • A discharge plasma reactor using a ferroelectric pellet packed bed is now used as a removal means of pollutant gases, such as NOx, SOx and VOCs. When an ac voltage is applied to this plasma reactor, then the pellets are polarized, and great electric fields are formed at each top and bottom contact points of the ferroelectric pellets. Thus the points of each pellet become covered with intense corona discharges, where an electrophysicochemical reaction is taking place strongly However these strong discharges also elevate the temperature of the pellets greatly and concurrently decrease the output ozone generation, as a result, the overall removal efficiency of gas becomes decreased greatly A new configuration of discharge plasma reactor using a ferroelectric pellet layer and a wire-to-wire electrode has been proposed and investigated experimentally. It is found that an intensive microdischarge is taking place on the surface of ac corona-charged ferroelectric pellet layer of the proposed reactor, which concurrently enhances the efficiency of plasma generation greatly And, this type of configuration of plasma reactor utilizing a wire-to-wire electrode and a ferroelectric pellet layer could be used as one of effective plasma reactors to remove pollutant gas.