• Title/Summary/Keyword: Polishing machine

Search Result 219, Processing Time 0.022 seconds

Statistical Qualitative Analysis on Chemical Mechanical Polishing Process and Equipment Characterization

  • Hong, Sang-Jeen;Hwang, Jong-Ha;Seo, Dong-Sun
    • Transactions on Electrical and Electronic Materials
    • /
    • v.12 no.3
    • /
    • pp.115-118
    • /
    • 2011
  • Process characterization of the chemical mechanical polishing (CMP) process for undensified phosphosilicate glass (PSG) film is reported using design of experiments (DOE). DOE has been addressed to experimenters to understand the relationship between input variables and responses of interest in a simple and efficient way. It is typically beneficial for determining the adequate size of experiments with multiple process variables and making statistical inferences for the responses of interests. Equipment controllable parameters to operate the machine include the down force (DF) of the wafer carrier, pressure on the backside of the wafer, table and spindle speed (SS), slurry flow rate, and pad condition. None of them is independent; thus, the interaction between parameters also needs to be indicated to improve process characterization in CMP. In this paper, we have selected the five controllable equipment parameters, such as DF, back pressure (BP), table speed (TS), SS, and slurry flow (SF), most process engineers recommend to characterize the CMP process with respect to material removal rate (RR) and film uniformity as a percentage. The polished material is undensified PSG. PSG is widely used for the plananization in multi-layered metal interconnects. We identify the main effect of DF, BP, and TS on both RR and film uniformity, as expected, by the statistical modeling and analysis on the metrology data acquired from a series of $2^{5-1}$ fractional factorial design with two center points. This revealed the film uniformity of the polished PSG film contains two and three-way interactions. Therefore, one can easily infer that the process control based on better understanding of the process is the key to success in semiconductor manufacturing, typically when the wafer size reaches 300 mm and is continuously scheduled to expand up to 450 mm in or little after 2012.

A STUDY ON THE SHEAR BOND STRENGTH OF THE COMPOSITE RESIN TO GLASS IONOMER CEMENT ACCORDING TO SURFACE TREATMENT METHODS OF GLASS IONOMER CEMENT (글라스 아이오노머 시멘트의 표면처리방법에 따른 복합레진과의 전단결합강도에 관한 연구)

  • No, Bong-Hwan;Hwang, Ho-Keel;Cho, Young-Gon
    • Restorative Dentistry and Endodontics
    • /
    • v.20 no.1
    • /
    • pp.362-371
    • /
    • 1995
  • The purpose of this study was to evaluate the shear bond strength between composite resin and glass ionomer cement according to surface treatment methods of glass ionomer cement. Sixty round acrylic cylinders were fabricated. And then, a round undercut cavity(8 mm diameter, 2.5mm depth) was prepared in the center of the every acrylic cylinder. After all cavities were restored by using light-cured glass ionomer cement. A total of sixty acrylic cylinders restored with glass ionomer cement were divided into 4 groups according to surface treatment methods of glass ionomer cement. The surface treatment of each group were as follows : control group : no treatment Group 1 : acid etching Group 2 : sandblasting Group 3 : air-podwer abrasive polishing The composite resin was bonded to glass ionomer cement of each specimens. And the shear bond strength was tested with a universal testing machine at a cross-head speed of 1mm/min and 500kg in full scale. The results were as follows : 1. The sandblasting group(group 2) had the highest shear bond strength with $272.50{\pm}24.96\;kg/cm_2$ and the acid etching group(group 1) had the lowest shear bond strength with $192.89{\pm}29.32kg/cm_2$. 2. The no treated group(control group) had higher shear bond strength than acid etching group(group 1) (p<0.05). 3. The sandblasting group(group 2), air-powder abrasive polishing group(group 3) and no treated group(control group) had higher shear bond strength than the acid etching group(group 1) (p<0.05). 4. The sandblasting group(group 2) and air-powder abrasive polishing group(group 3) had higher shear bond strength than the no treatment group(control group), but there was not significant(p>0.05).

  • PDF

A study of metal aspheric reflector manufacturing in diamond turning machine (다이아몬드 터닝머신을 이용한 금속 비구면 초정밀 절삭특성)

  • Kim, G.H.;Do, C.J.;Hong, K.H.;Rui, B.J.;Won, J.H.;Kim, S.S.
    • Proceedings of the KSME Conference
    • /
    • 2001.06c
    • /
    • pp.83-87
    • /
    • 2001
  • A 110 mm diameter aspheric metal secondary mirror for a test model of an earth observation satellite camera was fabricated by ultra-precision single point diamond turning (SPDT). Aluminum alloy for mirror substrates is known to be easily machinable, but not polishable due to its ductility. A harder material, Ni, is usually electrolessly coated on an Al substrate to increase the surface hardness for optical polishing. Aspheric metal secondary mirror without a conventional polishing process, the surface roughness of Ra=10nm, and the form error of $Ra={\lambda}/12({\lambda}=632nm)$ has been required. The purpose of this research is to find the optimum machining conditions for reflector cutting of electroless-Ni coated Al alloy and apply the SPDT technique to the manufacturing of ultra precision optical components of metal aspheric reflector.

  • PDF

A Study on the Control Method for the Tool Path of Aspherical Surface Grinding and Polishing (비구면 연삭 및 연마를 위한 공구 경로 제어에 관한 연구)

  • Kim, Hyung-Tae;Yang, Hae-Jeong;Kim, Sung-Chul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.1 s.178
    • /
    • pp.113-120
    • /
    • 2006
  • This paper proposed the control algorithm fur aspheric surface grinding and was verified by the experiment. The functions of the algorithm were simultaneous control of the position and interpolation of the aspheric curve. The non-linear formula of the tool position was derived from the aspheric equations and the shape of the tool. The function was partitioned by an certain interval and the control parameters were calculated at each control section. The movement in a session was interpolated with acceleration and velocity. The position error was feed-backed by rotary encorder. The concept of feedback algorithm was correcting position error by increasing or decreasing the speed. In the experiment, two-axis machine was controlled to track the aspheric surface by the proposed algorithm. The effect of the control and process parameters was monitored. The result showed that the maximum tracking error was under sub-micro level for the concave and convex surfaces.

A Study on the Optimization of Deburring Process for the Micro Channel using EP-MAP Hybrid Process (전해-자기 복합 가공을 이용한 마이크로 채널 디버링공정 최적화)

  • Lee, Sung-Ho;Kwak, Jae-Seob
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.2
    • /
    • pp.298-303
    • /
    • 2013
  • Magnetic abrasive polishing is one of the most promising finishing methods applicable to complex surfaces. Nevertheless this process has a low efficiency when applied to very hardened materials. For this reason, EP-MAP hybrid process was developed. EP-MAP process is expected to machine complex and hardened materials. In this research, deburring process using EP-MAP hybrid process was proposed. EP-MAP deburring process is applied to micro channel, thereby it can obtain both deburring process and polishing process. EP-MAP deburring process on the micro channel was performed. Through design of experiment method, error of height in this process according to process parameter is analyzed. When the level 1 parameter A(magnetic flux density) and level 2 parameter B(electric potential), C(working gap) and level 3 parameter D(feed rate) are applied in the deburring process using EP-MAP hybrid process, it provides optimum result of EP-MAP hybrid deburring process.

Surface Finishing of Ballscrew by Abrasive Wheel Brush (연마재함유 휠브러쉬에 의한 볼스크류 연마기술)

  • 이응숙;김재구;황경현
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.1049-1052
    • /
    • 1997
  • The pupose of this study on the surface finishing is to examine the performance of brushing as a means of reducing the surface roughness of the precision theaded shafts in ball screw assemblies. Ball screws provide superior performance compared to other types of screw feeds in terms of static and dynamic rolling resistance,backlash,and wear characteristics. The Reduction of the surface roughness of the lead shaft in ball screw assembiles is essential for precision movement,high speed/low noise tracel, and for low wear/long life. To reduce machine dependent errors that would influence the surface roughness compared with other lapping or polishing techniques,experiments will be performed using special wire brushes to polish precision ground shafts. The best results were obtained using the Al /sab 2/O /sab3/ brushes, with the Al /sab 2/O /sab3/ #500 grit brush producing a surface finish of approximately 0.7 .mu.m, and the Al /sab 2/O /sab3/ #600 grit producing a surface finish of approximately 0.8 .mu.m. Both of these results were produced at the highest wheel polishing speed of 3520 rpm. The SiC #500 brush produced a surface roughness of approximately 1 .mu.m at 3520 rpm.

  • PDF

Predicting and Interpreting Quality of CMP Process for Semiconductor Wafers Using Machine Learning (머신러닝을 이용한 반도체 웨이퍼 평탄화 공정품질 예측 및 해석 모형 개발)

  • Ahn, Jeong-Eon;Jung, Jae-Yoon
    • The Journal of Bigdata
    • /
    • v.4 no.2
    • /
    • pp.61-71
    • /
    • 2019
  • Chemical Mechanical Planarization (CMP) process that planarizes semiconductor wafer's surface by polishing is difficult to manage reliably since it is under various chemicals and physical machinery. In CMP process, Material Removal Rate (MRR) is often used for a quality indicator, and it is important to predict MRR in managing CMP process stably. In this study, we introduce prediction models using machine learning techniques of analyzing time-series sensor data collected in CMP process, and the classification models that are used to interpret process quality conditions. In addition, we find meaningful variables affecting process quality and explain process variables' conditions to keep process quality high by analyzing classification result.

  • PDF

Development of CAM system for 5-axis automatic roughing machine Based on Reverse Engineering (역공학 기반 5축 신발 러핑용 CAM 시스템 개발)

  • Kim Hwa Young;Son Seong Min;Ahn Jung Hwan;Kang Dong Bae
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.7 s.172
    • /
    • pp.122-129
    • /
    • 2005
  • Shoe with leather upper such as safety and golf shoe requires a roughing process where the upper is roughed fur helping outsole to be cemented well. It is an important and basic process for production of leather shoe but is not automated yet. Thus, there are problems that the defect rate is high and the quality of roughed surface is not uniform. In order to solve such problems, the interest in automation of roughing process is being increased and this paper introduces CAM system for 5-axis automatic roughing machine as one part of automation of roughing process. The CAM system developed interpolates a B-spline curve using points measured from the Roughing Path Measurement System. The B-spline curve is used to generate the tool path and orientation data fer a roughing tool which has not only stiffness but also flexibility to rough the inclined surface efficiently. For productivity, the upper of shoe is machined by side of the roughing tool and tool offset is applied to the roughing tool for machining of inclined surface. The generated NC code was applied to 5-axis polishing machine for the test. The upper of shoe was roughed well along the roughing path data from CAM and the roughed surface was proper fur cementing of the outsole.

A Study on the Characteristics on Ultra Precision Machining of IR Camera Mirror (적외선 카메라용 반사경의 초정밀 절삭특성에 관한 연구)

  • Kim Gun-Hee;Kim Hyo-Sik;Shin Hyun-Soo;Won Jong-Ho;Yang Sun-Choel
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.5 s.182
    • /
    • pp.44-50
    • /
    • 2006
  • This paper describs about the technique of ultra-precision machining for an infrared(IR) camera aspheric mirror. A 200 mm diameter aspheric mirror was fabricated by SPDTM(Single Point Diamond Turning Machine). Aluminum alloy as mirror substrates is known to be easily machined, but not polishable due to its ductility. Aspheric large reflector without a polishing process, the surface roughness of 5 nm Ra, and the form error of ${\lambda}/2\;({\lambda}=632.8\;nm)$ for reference curved surface 200 mm has been required. The purpose of this research is to find the optimum machining conditions for cutting reflector using Al6061-T651 and apply the SPDTM technique to the manufacturing of ultra precision optical components of Al-alloy aspheric reflector. The cutting force and the surface roughness are measured according to each cutting conditions feed rate, depth of cut and cutting speed, using diamond turning machine to perform cutting processing. As a result, the surface roughness is good when feed rate is 1mm/min, depth of cut $4{\mu}m$ and cutting speed is 220 m/min. We could machined the primary mirror for IR camera in diamond machine with a surface roughness within $0.483{\mu}m$ Rt on aspheric.

Appling of Force Control of the Robotic Sweeping Machine for Grinding (연마작업을 위한 로봇형 연마기의 힘제어 적용)

  • Jin, Taeseok
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.2
    • /
    • pp.276-281
    • /
    • 2014
  • In this research, we describe a force feedback control for industrial robots has been proposed as a system which is suitable to work utilizing pressure sensitive alternative to human. Conventionally, polished surface of the workpiece are recognized, chamfer ridge, machining processes such as deburring, and it is most difficult to automate because of its complexity, has been largely dependent on the human. To aim to build automatic vacuum system robotic force control was gripping the grinding tool, the present study we examined the adaptability to the polishing process to understand the characteristics of the control system feedback signal obtained from the force sensor mainly. Furthermore, as a field, which holds the key to the commercialization, I went ahead with the application to robotic sweeping machine. As a result, the final sweeping utilizing a robot machine to obtain a very good grinded surface was revealed.