• Title/Summary/Keyword: Polanyi

Search Result 19, Processing Time 0.024 seconds

Tightness of the Transition State for the Reactions of Secondary Alkyl Arenesulfonates with Anilines in Acetonitrile

  • 오혁근;권영봉;정동수;이익춘
    • Bulletin of the Korean Chemical Society
    • /
    • v.16 no.9
    • /
    • pp.827-831
    • /
    • 1995
  • Kinetic studies on the reactions of five secondary acylic alkyl arenesulfonates with anilines are carried out in acetonitrile at 65.0 ℃. The magnitude of ρXZ determined (ρXZ=0.12-0.13) is slightly greater than that for the alicyclic series (ρXZ=0.11) under the same experimental condition. Ab initio MO results are found to support the slightly tighter transition state expected from the greater magnitude of ρXZ for the acyclic series. Despite the small variations, the magnitude of ρXZ and the theoretical transition state tightness remain relatively constant for the secondary carbon centers. Secondary kinetic isotope effects involving deuterated aniline nucleophiles show a successively smaller kH/kD(<1.0) value for a more sterically crowded reaction center carbon. This is in accord with the later transition state for bond-making predicted by the Bell-Evans-Polanyi principle for the more endothermic nucleophilic substitution reaction. Further support is provided by the results of the AM1 MO calculations on the reactions of secondary alkyl benzenesulfonates with chloride nucleophile.

Reaction of Gae-Phase Atomic Hydrogen with Chemisorbed Hydrogen Atoms on an Iron Surface

  • Kim, M. S.;Ree, J.
    • Bulletin of the Korean Chemical Society
    • /
    • v.18 no.9
    • /
    • pp.985-994
    • /
    • 1997
  • The reaction of gas-phase atomic hydrogen with hydrogen atoms chemisorbed on Fe(110) surface is studied by use of classical trajectory procedures. Flow of energy between the reaction zone and bulk solid phase has been treated in the generalized Langevin equation approach. A London-Eyring-Polanyi-Sato energy surface is used for the reaction zone interaction. Most reactive events are found to occur in strong single-impact collisions on a subpicosecond scale via the Eley-Rideal mechanism. The extent of reaction is large and a major fraction of the available energy goes into the vibrational excitation of H2, exhibiting a vibrational population inversion. Dissipation of reaction energy to the heat bath can be adequately described using a seven-atom chain with the chain end bound to the rest of solid. The extent of reaction is not sensitive to the variation of surface temperature in the range of Ts=0-300 K in the fixed gas temperature, but it shows a minimum near 1000 K over the Tg=300-2500 K.

Quasi-classical Trajectory Calculation of the Chemical Reactions Ba+C6H5Br, m-C6H4CH3Br

  • Xia, Wenwen;Liu, Yonglu;Zhong, Haiyang;Yao, Li
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.2
    • /
    • pp.589-596
    • /
    • 2012
  • In this paper, the reactive dynamics properties of the reactions Ba + $C_6H_5Br$ and Ba + m-$C_6H_4CH_3Br$ were studied by means of the quasi-classical trajectory method based on the London-Eyring-Polanyi-Sato potential energy surfaces. The vibrational distributions, reaction cross sections, rotational alignments of the products BaBr all were obtained. The peak values of the vibrational distributions are located at $\nu$ = 0 for the reactions Ba + $C_6H_5Br$ and Ba + m-$C_6H_4CH_3Br$ when the collision energies are 1.09 and 1.10 eV, respectively. The reaction cross sections increase with the increasing collision energy, which changes from 0.6 to 1.5 eV. The product rotational alignments deviate from -0.5 and firstly increase and then decrease while the collision energy is increasing, just like that of Heavy+Light-Light system.

Development of Optical Sensor for Non-invasive Oxygen Saturation Measurement (비추출식 산소 포화도 측정용 광센서의 연구 개발)

  • Kwon, Ki-Jin;Park, Se-Kwang;Min, Byoung-Goo
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1991 no.11
    • /
    • pp.133-141
    • /
    • 1991
  • 혈중 산소 포화도는 생체의 중요한 정보로써 많은 학자들이 산소 포화도를 비추출방법으로 측정하기 위한 이론과 센서의 제작에 관해서 연구를 하고 있다. 혈액에서의 빗의 흡수(Absorption)와 산란(Scattering)에 관한 이론 연구가 Ishimaru, Takatani. Johnson 등의 학자들에 의해 진행되었고, Polanyi, Hehir, Johnson, Schmitt등에 의해서 센서 구조와 센서 제작에 관한 연구가 진행되고 있다. 산소 포화도를 직접 혈액을 추출하지 않고 비추출식으로 측정하게 된다면, 최근 우리나라에서도 인공 심장이 개발되고 있으므로 인공 심장의 제어에 필요한 정보로써 산소 포화도를 신속 정확하게 공급할 수 있어 인공 심장의 정확한 재어가 가능하다. 그리고 반도체 기술을 이용하여 소형화가 가능하므로 생체 적용성(Biocompatibility)이 우수하고 다기능을 가진 센서를 만들 수 있다. 본 논문에서는 비추출식으로 산소 포화도를 측정하기 위한 투과광 방식과 반사광 방식의 기본 이론 및 센서의 설계를 위한 기본 이론을 분석하였다. 그리고, 적색광의 사용가능성을 테스트하기 위한 모의 실험도 행하였다.

  • PDF

EVALUATION OF FERROCYANIDE ANION EXCHANGE RESINS REGARDING THE UPTAKE OF Cs+ IONS AND THEIR REGENERATION

  • Won, Hui-Jun;Moon, Jei-Kwon;Jung, Chong-Hun;Chung, Won-Yang
    • Nuclear Engineering and Technology
    • /
    • v.40 no.6
    • /
    • pp.489-496
    • /
    • 2008
  • Ferrocyanide-anion exchange resin was prepared and the prepared ion exchange resins were tested on the ability to uptake $Cs^+$ ion. The prepared ion exchange resins were resin-KCoFC, resin-KNiFC, and resin-KCuFC. The three tested ion exchange resins showed ion exchange selectivity on the $Cs^+$ ion of the surrogate soil decontamination solution, and resin-KCoFC showed the best $Cs^+$ ion uptake capability among the tested ion exchange resins. The ion exchange behaviors were explained well by the modified Dubinin-Polanyi equation. A regeneration feasibility study of the spent ion exchange resins was also performed by the successive application of hydrogen peroxide and hydrazine. The desorption of the $Cs^+$ ion from the ion exchange resin satisfied the electroneutrality condition in the oxidation step; the desorption of the $Fe^{2+}$ ion in the reduction step could also be reduced by adding the $K^+$ ion.

Single and Binary Competitive Sorption of Phenanthrene and Pyrene in Natural and Synthetic Sorbents

  • Masud, Md Abdullah Al;Shin, Won Sik
    • Journal of Soil and Groundwater Environment
    • /
    • v.27 no.6
    • /
    • pp.11-21
    • /
    • 2022
  • Sorption of phenanthrene (PHE) and pyrene (PYR) in several sorbents, i.e., natural soil, BionSoil®, Pahokee peat, vermicompost and Devonian Ohio Shale and a surfactant (hexadecyltrimethyl ammonium chloride)-modified montmorillonite (HDTMA-M) were investigated. Pyrene exhibited higher sorption tendency than phenanthrene, as predicted by its higher octanol to water partition coefficient (Kow). Several sorption models: linear, Freundlich, solubility-normalized Freundlich model, and Polanyi-Manes model (PMM) were used to analyze sorption isotherms. Linear isotherms were observed for natural soil, BionSoil®, Pahokee peat, vermicompost, while nonlinear Freundlich isotherms fitted for Ohio shale and HDTMA-M. The relationship between sorption model parameters, organic carbon content (foc), and elemental C/N ratio was studied. In the binary competitive sorption of phenanthrene and pyrene in natural soil, competition between the solutes caused reduction in the sorption of each solute compared with that in the single-solute system. The ideal adsorbed solution theory (IAST) coupled with the single-solute Freundlich model was not successful in describing the binary competitive sorption equilibria. This was due to the inherent nature of linear sorption of phenanthrene and pyrene in natural soil. The result indicates that the applicability of IAST for the prediction of binary competitive sorption is limited when the sorption isotherms are inherently linear.

Removal CO2 Using Na2CO3, K2CO3 and Li2CO3 Impregnated Activated Carbon -Characteristics of CO2 Adsorption in Fixed Bed Reactor- (Na2CO3, K2CO3 및 Li2CO3 첨착활성탄을 이용한CO2 제거 -고정층 반응기에서의 CO2 흡착특성-)

  • Choi, Won-Joon;Jung, Jong-Hyeon
    • Journal of Environmental Health Sciences
    • /
    • v.34 no.3
    • /
    • pp.240-246
    • /
    • 2008
  • The purpose of this study was to gain basic information on the characteristics of $CO_2$ adsorption in relation to $Na_2CO_3$, $K_2CO_3$, $Li_2CO_3$-impregnated activated carbon in a Fixed Bed Reactor. From the results of this study the following conclusions were made: $Na_2CO_3$, $K_2CO_3$, $Li_2CO_3$-impregnated activated carbon had a longer breakthrough time and more enhanced adsorption capacity than activated carbon alone. When tested with isothermal adsorption and tested for $CO_2$ adsorption the amount of $CO_2$ adsorbed varied with temperature, $CO_2$ inlet concentration, gas flow rate, aspect ratio, etc. Based on the results, when Langmuir, Freundlich and Dubinin-Polanyi adsorption isotherms were used for linear regression of isothermal adsorption data, Langmuir adsorption isotherm was the most suitable. And, the optimum condition for $Na_2CO_3$ and $K_2CO_3$ impregnated activated carbon make-up was 1N and $Li_2CO_3$ was 0.1N. It could be concluded that adsorption capacity was decreased with adsorption temperature and increased gas concentration. When the aspect ratio (L/D) was varied 0.5, 1.0 and 2.0, the significant drop of adsorption amount was observed below 1.0 and breakthrough time was shortened with gas flow rate.

Identification of Tetrachloroethylene Sorption Behaviors in Natural Sorbents Via Sorption Models

  • Al Masud, Md Abdullah;Choi, Jiyeon;Shin, Won Sik
    • Journal of Soil and Groundwater Environment
    • /
    • v.27 no.6
    • /
    • pp.47-57
    • /
    • 2022
  • A number of different methods have been used for modeling the sorption of volatile organic chlorinated compounds such as tetrachloroethylene/perchloroethylene (PCE). In this study, PCE was adsorbed in several natural sorbents, i.e., Pahokee peat, vermicompost, BionSoil®, and natural soil, in the batch experiments. Several sorption models such as linear, Freundlich, solubility-normalized Freundlich model, and Polanyi-Manes model (PMM) were used to analyze sorption isotherms. The relationship between sorption model parameters, organic carbon content (foc), and elemental C/N ratio was studied. The organic carbon normalized partition coefficient values (log Koc = 1.50-3.13) in four different sorbents were less than the logarithm of the octanol-water partition coefficient (log Kow = 3.40) of PCE due to high organic carbon contents. The log Koc decreased linearly with log foc and log C/N ratio, but increased linearly with log O/C, log H/C, and log (N+O)/C ratio. Both log KF,oc or log KF,oc decreased linearly with log foc (R2 = 0.88-0.92) and log C/N ratio (R2 = 0.57-0.76), but increased linearly with log (N+O)/C (R2 = 0.93-0.95). The log qmax,oc decreased linearly as log foc and log C/N increased, whereas it increased with log O/C, log H/C and log (N+O)/C ratios. The log qmax,oc increased linearly with (N+O)/C indicating a strong dependence of qmax,oc on the polarity index. The results showed that PCE sorption behaviors were strongly correlated with the physicochemical properties of soil organic matter (SOM).

The Adsorption and Desorption of $NH_3$ on Rutile $TiO_2(110)-1{\times}1$ Surfaces

  • Kim, Bo-Seong;Li, Zhenjun;Kay, Bruce D.;Dohnalek, Zdenek;Kim, Yu-Gwon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.265-265
    • /
    • 2012
  • The adsorption of molecular $NH_3$ on rutile $TiO_2(110)-1{\times}1$ surfaces was investigated using a temperature-programmed desorption (TPD) technique combined with a molecular beam apparatus. A quantitative investigation into the TPD spectra of $NH_3$ was made for $NH_3$ adsorbed on two kinds of rutile $TiO_2(110)-1{\times}1$ surfaces with the oxygen vacancy ($V_O$) concentration of ~0% (p-$TiO_2(110)$) and ~5% (r-$TiO_2(110)$), respectively. On both surfaces, non-dissociative adsorption of $NH_3$ was inferred from a quantitative analysis on the amount of adsorbed $NH_3$ and those desorbed. With increasing coverage, the monolayer desorption feature shifted from 400 K toward lower temperatures until it saturates at 160 K, suggesting a repulsive nature in the interaction between $NH_3$ molecules. At the very low coverage regime, the desorption features were found to extend up to 430 K and 400 K on p-$TiO_2(110)$ and p-TiO(110), respectively. As a result, the saturation coverage of monolayer of $NH_3$ was higher on the p-$TiO_2(110)$ surface than on the p-TiO(110) by about 10%. The desorption energy ($E_d$) of $NH_3$ obtained by inversion of the Polanyi-Wigner equation indicated that the difference between the $E_d$'s of $NH_3$ (that is, $E_d(on\;p-TiO_2(110)$) - $E_d$(on p-TiO(110)) was 14 kJ/mol at ${\theta}(NH_3)=0$ and decreased to 0 as the coverage approached to a monolayer. The observed adsorption behavior of $NH_3$ was interpreted using an interaction model between $NH_3$ and surface defects on $TiO_2$ such as VO's and $Ti^{3+}$ interstitials.

  • PDF