The Adsorption and Desorption of NH₃ on Rutile TiO₂(110)-1×1 Surfaces

<u>김보성¹</u>, Zhenjun Li², Bruce D. Kay², Zdenek Dohnalek², 김유권^{1,*}

¹Department of Energy Systems Research and Department of Chemistry, Ajou University, Suwon 443-749, South Korea, ²Chemical and Materials Sciences Division, Fundamental and Computational Sciences Directorate, Pacific Northwest Nationa

The adsorption of molecular NH₃ on rutile $TiO_2(110)-1\times 1$ surfaces was investigated using a temperature-programmed desorption (TPD) technique combined with a molecular beam apparatus. A quantitative investigation into the TPD spectra of NH₃ was made for NH₃ adsorbed on two kinds of rutile TiO₂(110)-1×1 surfaces with the oxygen vacancy (V₀) concentration of \sim 0% (p-TiO₂(110)) and \sim 5% (r-TiO₂(110)), respectively. On both surfaces, non-dissociative adsorption of NH₃ was inferred from a quantitative analysis on the amount of adsorbed NH₃ and those desorbed. With increasing coverage, the monolayer desorption feature shifted from 400 K toward lower temperatures until it saturates at 160 K, suggesting a repulsive nature in the interaction between NH₃ molecules. At the very low coverage regime, the desorption features were found to extend up to 430 K and 400 K on p-TiO₂(110) and p-TiO(110), respectively. As a result, the saturation coverage of monolayer of NH₃ was higher on the p-TiO₂(110) surface than on the p-TiO(110) by about 10%. The desorption energy (E_d) of NH₃ obtained by inversion of the Polanyi-Wigner equation indicated that the difference between the E_d 's of NH₃ (that is, E_d (on p-TiO₂(110)) - E_d (on p-TiO(110)) was 14 kJ/mol at θ (NH₃) = 0 and decreased to 0 as the coverage approached to a monolayer. The observed adsorption behavior of NH3 was interpreted using an interaction model between NH3 and surface defects on TiO2 such as V_0 's and Ti^{3+} interstitials.

Keywords: TiO₂(110), NH₃, Temperature-programmed desorption, TPD, Desorption energy