• Title/Summary/Keyword: Poisson Distribution

Search Result 590, Processing Time 0.029 seconds

Analysis of MODFET Transport using Monte-Carlo Algorithm ` Gate Length Dependent Characteristics (몬테칼로 알고리즘을 이용한 MODFET소자의 전달특성분석;채널길이에 따른 특성분석)

  • Hak Kee Jung
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.30A no.4
    • /
    • pp.40-50
    • /
    • 1993
  • In this paper, MODFET devices with various gate length are simulated using the Monte-Carlo method. The number of superparticle is 5000 and the Poisson equation is solved to obtain field distribution. The structure of MODFET is n-AlGaAs/i-AlGaAs/iGaAs and doping concentration of n-AlGaAs layer is 1${\times}10^{17}/cm^{3}$ and the thickness is 500.angs., and the thickness of i-AlGaAs is 50$\AA$. The devices with gate length 0.2$\mu$m, 0.5$\mu$m, 1.0$\mu$m respctively are simulated and the current-voltage curves and transport characteristics of that devices are obtained. Occupancy of each subband and electron energy distribution and conduction energy band in channel have been analyzed to obtain transport characteristics, and particles transposed from source to drain have been analyzed to current-voltage curves. Current level is highest for the device of Lg=0.2$\mu$m and transconductance of this device is 310mS/mm.

  • PDF

The Comparative Software Reliability Model of Fault Detection Rate Based on S-shaped Model (S-분포형 결함 발생률을 고려한 NHPP 소프트웨어 신뢰성 모형에 관한 비교 연구)

  • Kim, Hee Cheul;Kim, Kyung-Soo
    • Convergence Security Journal
    • /
    • v.13 no.1
    • /
    • pp.3-10
    • /
    • 2013
  • In this paper, reliability software model considering fault detection rate based on observations from the process of software product testing was studied. Adding new fault probability using the S-shaped distribution model that is widely used in the field of reliability problems presented. When correcting or modifying the software, finite failure non-homogeneous Poisson process model was used. In a software failure data analysis considering the time-dependent fault detection rate, the parameters estimation using maximum likelihood estimation of failure time data and reliability make out.

Analytical Surface Potential Model with TCAD Simulation Verification for Evaluation of Surrounding Gate TFET

  • Samuel, T.S. Arun;Balamurugan, N.B.;Niranjana, T.;Samyuktha, B.
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.655-661
    • /
    • 2014
  • In this paper, a new two dimensional (2D) analytical modeling and simulation for a surrounding gate tunnel field effect transistor (TFET) is proposed. The Parabolic approximation technique is used to solve the 2-D Poisson equation with suitable boundary conditions and analytical expressions for surface potential and electric field are derived. This electric field distribution is further used to calculate the tunneling generation rate and thus we numerically extract the tunneling current. The results show a significant improvement in on-current characteristics while short channel effects are greatly reduced. Effectiveness of the proposed model has been confirmed by comparing the analytical results with the TCAD simulation results.

A statistical consideration on the number of occurrences of langerhans cells (란게르한스 세포의 출현횟수에 대한 통계적 고찰)

  • 이기원
    • The Korean Journal of Applied Statistics
    • /
    • v.5 no.2
    • /
    • pp.271-282
    • /
    • 1992
  • A statistical method to investigate the relationship between the occurrence of Langerahans cells and neoplastic transformation of uterine cerivx. The best fitting submodel which satisfies the selection criterion similar in type to AIC is selected among the possible submodels based on Poisson probability models. A bootstrap method is used to approximate the sampling distribution of the selection criterion and the usual normal approximation is used to find the asymptotic distribution of the estimated rates.

  • PDF

Thermoelastic analysis of rectangular plates with variable thickness made of FGM based on TSDT using DQ method

  • Amiri, Majid;Loghman, Abbas;Arefi, Mohammad
    • Geomechanics and Engineering
    • /
    • v.29 no.6
    • /
    • pp.667-681
    • /
    • 2022
  • This paper presents a thermoelastic analysis of variable thickness plates made of functionally graded materials (FGM) subjected to mechanical and thermal loads. The thermal load is applied to the plate as a temperature difference between the top and bottom surfaces. Temperature distribution in the plate is obtained using the steady-state heat equation. Except for Poisson's ratio, all mechanical properties of the plate are assumed to vary linearly along the thickness direction based on the volume fractions of ceramic and metal. The plate is resting on an elastic foundation modeled based on the Winkler foundation model. The governing equations are derived based on the third-order shear deformation theory (TSDT) and are solved numerically for various boundary conditions using the differential quadrature method (DQM). The effects of various parameters on the stress distribution and deflection of the plate are investigated such as the value of thermal and mechanical loads, volume fractions of ceramic and metal, and the stiffness coefficients of the foundation.

The Comparative Study based on Gompertz Software Reliability Model of Shape Parameter (곰페르츠형 형상모수에 근거한 소프트웨어 신뢰성모형에 대한 비교연구)

  • Shin, Hyun Cheul;Kim, Hee Cheul
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.10 no.2
    • /
    • pp.29-36
    • /
    • 2014
  • Finite failure NHPP software reliability models presented in the literature exhibit either constant, monotonic increasing or monotonic decreasing failure occurrence rates per fault. In this paper, proposes the Gompertz distribution reliability model, which made out efficiency application for software reliability. Algorithm to estimate the parameters used to maximum likelihood estimator and bisection method, model selection based on mean square error (MSE) and coefficient of determination$(R^2)$, for the sake of efficient model, was employed. Analysis of failure using real data set for the sake of proposing fixed shape parameter of the Gompertz distribution was employed. This analysis of failure data compared with the Gompertz distribution model of shape parameter. In order to insurance for the reliability of data, Laplace trend test was employed. In this study, the proposed Gompertz model is more efficient in terms of reliability in this area. Thus, Gompertz model can also be used as an alternative model. From this paper, software developers have to consider the growth model by prior knowledge of the software to identify failure modes which can was helped.

On Some Distributions Generated by Riff-Shuffle Sampling

  • Son M.S.;Hamdy H.I.
    • International Journal of Contents
    • /
    • v.2 no.2
    • /
    • pp.17-24
    • /
    • 2006
  • The work presented in this paper is divided into two parts. The first part presents finite urn problems which generate truncated negative binomial random variables. Some combinatorial identities that arose from the negative binomial sampling and truncated negative binomial sampling are established. These identities are constructed and serve important roles when we deal with these distributions and their characteristics. Other important results including cumulants and moments of the distributions are given in somewhat simple forms. Second, the distributions of the maximum of two chi-square variables and the distributions of the maximum correlated F-variables are then derived within the negative binomial sampling scheme. Although multinomial theory applied to order statistics and standard transformation techniques can be used to derive these distributions, the negative binomial sampling approach provides more information and deeper insight regarding the nature of the relationship between the sampling vehicle and the probability distributions of these functions of chi-square variables. We also provide an algorithm to compute the percentage points of these distributions. We supplement our findings with exact simple computational methods where no interpolations are involved.

  • PDF

The Role of Negative Binomial Sampling In Determining the Distribution of Minimum Chi-Square

  • Hamdy H.I.;Bentil Daniel E.;Son M.S.
    • International Journal of Contents
    • /
    • v.3 no.1
    • /
    • pp.1-8
    • /
    • 2007
  • The distributions of the minimum correlated F-variable arises in many applied statistical problems including simultaneous analysis of variance (SANOVA), equality of variance, selection and ranking populations, and reliability analysis. In this paper, negative binomial sampling technique is employed to derive the distributions of the minimum of chi-square variables and hence the distributions of the minimum correlated F-variables. The work presented in this paper is divided in two parts. The first part is devoted to develop some combinatorial identities arised from the negative binomial sampling. These identities are constructed and justified to serve important purpose, when we deal with these distributions or their characteristics. Other important results including cumulants and moments of these distributions are also given in somewhat simple forms. Second, the distributions of minimum, chisquare variable and hence the distribution of the minimum correlated F-variables are then derived within the negative binomial sampling framework. Although, multinomial theory applied to order statistics and standard transformation techniques can be used to derive these distributions, the negative binomial sampling approach provides more information regarding the nature of the relationship between the sampling vehicle and the probability distributions of these functions of chi-square variables. We also provide an algorithm to compute the percentage points of the distributions. The computation methods we adopted are exact and no interpolations are involved.

Seismicity and seismic hazard assessment for greater Tehran region using Gumbel first asymptotic distribution

  • Bastami, Morteza;Kowsari, Milad
    • Structural Engineering and Mechanics
    • /
    • v.49 no.3
    • /
    • pp.355-372
    • /
    • 2014
  • Considering the history of severe earthquakes and the presence of active faults in the greater Tehran region, the possibility of a destructive earthquake occurring is high and seismic hazard analysis is crucial. Gumbel distributions are commonly-used statistical distributions in earthquake engineering and seismology. Their main advantage is their basis on the largest earthquake magnitudes selected from an equal-time predefined set. In this study, the first asymptotic distribution of extremes is used to estimate seismicity parameters and peak ground acceleration (PGA). By assuming a Poisson distribution for the earthquakes, after estimation of seismicity parameters, the mean return period and the probable maximum magnitude within a given time interval are obtained. A maximum probable magnitude of 7.0 has a mean return period of 100 years in this region. For a return period of 475 years, the PGA in the greater Tehran region is estimated to be 0.39g to 0.42g, depending on local site conditions. This value is greater than that of the Iranian Code for Seismic Design of Buildings, indicating that a revision of the code is necessary.

A Study on the Optimal Order of Queueing System with three Stations (세개의 창구로 구성된 큐잉시스템의 최적순서에 관한 연구)

  • 조한벽;김재련
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.14 no.24
    • /
    • pp.149-154
    • /
    • 1991
  • The one of the important problems in the design of queueing systems is the decision of the order of service stations. The object of this problem is the decision of the order that minimizes the expected sojourn time per customer in the given arrival process and service time distributions. In this paper, the tandem queueing system in series is studied with the emphasis on the optimal order of the tandem queueing system which has three stations with single servers. In one system, customers arrive at the first station with Poisson process. This system is composed of service stations with a constant, a general distribution and a Exponential distribution is studied. To select the optimal order after the orders of each pair of two stations is decided, it is compared the two orders of system. With this results, total expected delay of the systems which has three stations is compared. The result is the best that service station with constant time is on the first place, then the service station with general distribution and the service station with Exponential distribution is followed. And the other system is consist of service stations with a constant and two probabilistic distributions. In this case, two probabilistic distributions has a non-overlapping feature. It is the optimal order that the service station with constant time is on the first place then the service station with longer service time and the service station with shorter service time is followed.

  • PDF