DOI QR코드

DOI QR Code

Thermoelastic analysis of rectangular plates with variable thickness made of FGM based on TSDT using DQ method

  • Amiri, Majid (Department of Solid Mechanic, Faculty of Mechanical Engineering, University of Kashan) ;
  • Loghman, Abbas (Department of Solid Mechanic, Faculty of Mechanical Engineering, University of Kashan) ;
  • Arefi, Mohammad (Department of Solid Mechanic, Faculty of Mechanical Engineering, University of Kashan)
  • Received : 2021.11.02
  • Accepted : 2022.05.02
  • Published : 2022.06.25

Abstract

This paper presents a thermoelastic analysis of variable thickness plates made of functionally graded materials (FGM) subjected to mechanical and thermal loads. The thermal load is applied to the plate as a temperature difference between the top and bottom surfaces. Temperature distribution in the plate is obtained using the steady-state heat equation. Except for Poisson's ratio, all mechanical properties of the plate are assumed to vary linearly along the thickness direction based on the volume fractions of ceramic and metal. The plate is resting on an elastic foundation modeled based on the Winkler foundation model. The governing equations are derived based on the third-order shear deformation theory (TSDT) and are solved numerically for various boundary conditions using the differential quadrature method (DQM). The effects of various parameters on the stress distribution and deflection of the plate are investigated such as the value of thermal and mechanical loads, volume fractions of ceramic and metal, and the stiffness coefficients of the foundation.

Keywords

References

  1. Adab, N. and Arefi, M. (2022), "Vibrational behavior of truncated conical porous GPL-reinforced sandwich micro/nano-shells", Eng. Comput., 1-25. https://doi.org/10.1007/s00366-021-01580-8.
  2. Adab, N., Arefi, M. and Amabili, M. (2022), "A comprehensive vibration analysis of rotating truncated sandwich conical microshells including porous core and GPL-reinforced face-sheets", Compos. Struct., 279, 114761. https://doi.org/10.1016/j.compstruct.2021.114761.
  3. Arefi, M., Rahimi, G.H. and Khoshgoftar, M.J. (2011), "Optimized design of a cylinder under mechanical, magnetic and thermal loads as a sensor or actuator using a functionally graded piezomagnetic material", Int. J. Phys. Sci., 6(27), 6315-6322. https://doi.org/10.5897/IJPS10.597.
  4. Arefi, M. and Rahimi, G.H. (2011), "Non linear analysis of a functionally graded square plate with two smart layers as sensor and actuator under normal pressure", Smart. Struct. Syst., 8(5), 433-447. https://doi.org/10.12989/sss.2011.8.5.433.
  5. Arefi, M. and Rahimi, G.H. (2012), "Studying the nonlinear behavior of the functionally graded annular plates with piezoelectric layers as a sensor and actuator under normal pressure", Smart. Struct. Syst., 9(2), 127-143. https://doi.org/10.12989/sss.2012.9.2.127.
  6. Arefi, M. Nahas, I. (2014), "Nonlinear electro thermo elastic analysis of a thick spherical functionally graded piezoelectric shell", Compos. Struct. 118, 510-518. 10.1016/j.compstruct.2014.08.002
  7. Arefi, M. and Rahimi, G.H. (2014), "Application of shear deformation theory for two dimensional electro-elastic analysis of a FGP cylinder", Smart. Struct. Syst., 13(1), 1-24. https://doi.org/10.12989/sss.2014.13.1.001.
  8. Arefi, M., Mohammadi, M., Tabatabaeian, A., Dimitri, R. and Tornabene, F. (2018), "Two-dimensional thermo-elastic analysis of FG-CNTRC cylindrical pressure vessels", Steel. Compos. Struct., 27(4), 525-536. https://doi.org/10.12989/scs.2018.27.4.525.
  9. Arefi, M. (2014), "A complete set of equations for piezo-magnetoelastic analysis of a functionally graded thick shell of revolution", Lat. Amer. J. Solids. Struct., 11(11), 2073-2092. https://doi.org/10.1590/S1679-78252014001100009.
  10. Afshari, H. (2020a), "Effect of graphene nanoplatelet reinforcements on the dynamics of rotating truncated conical shells", J. Braz. Soc. Mech. Sci. Eng., 42(10), 1-22. https://doi.org/10.1007/s40430-020-02599-6.
  11. Afshari, H. (2020b), "Free vibration analysis of GNP-reinforced truncated conical shells with different boundary conditions", Austr. J. Mech. Eng., 1-17. https://doi.org/10.1080/14484846.2020.1797340.
  12. Ahmadi, H. and Foroutan, K. (2019), "Combination resonance analysis of FG porous cylindrical shell under two-term excitation", Steel. Compos. Struct., 32(2), 253-264. https://doi.org/10.12989/scs.2019.32.2.253.
  13. Al-Furjan, M.S.H., Habibi, M., Rahimi, A., Chen, G., Safarpour, H., Safarpour, M. and Tounsi, A. (2020a), "Chaotic simulation of the multi-phase reinforced thermo-elastic disk using GDQM", Eng. Comput., 1-24. https://doi.org/10.1007/s00366-020-01144-2.
  14. Al-Furjan, M.S.H., Habibi, M., Ni, J. and Tounsi, A. (2020b), "Frequency simulation of viscoelastic multi-phase reinforced fully symmetric systems", Eng. Comput., 1-17. https://doi.org/10.1007/s00366-020-01200-x.
  15. Al-Furjan, M., Safarpour, H., Habibi, M., Safarpour, M. and Tounsi, A. (2020), "A comprehensive computational approach for nonlinear thermal instability of the electrically FG-GPLRC disk based on GDQ method", Eng. Comput., 1-18. https://doi.org/10.1007/s00366-020-01088-7.
  16. Ali, A., Zhang, C., Bibi, T., Zhu, L., Cao, L., Li, C. and Hsiao, P. (2022). "Investigation of five different low-cost locally available isolation layer materials used in sliding base isolation systems". Soil Dyn. Earthq. Eng., 154, 107127. https://doi.org/10.1016/j.soildyn.2021.107127.
  17. Bai, Y., Alzahrani, B., Baharom, S. and Habibi, M. (2020), "Semi-numerical simulation for vibrational responses of the viscoelastic imperfect annular system with honeycomb core under residual pressure", Eng. Comput., 1-26. https://doi.org/10.1007/s00366-020-01191-9.
  18. Barati, M.R. (2017), "Vibration analysis of FG nanoplates with nanovoids on viscoelastic substrate under hygro-thermo-mechanical loading using nonlocal strain gradient theory", Struct. Eng. Mech., 64(6), 683-693. https://doi.org/10.12989/sem.2017.64.6.683.
  19. Beena, K.P. and Parvathy, U. (2014), "Linear static analysis of functionally graded plate using spline finite strip method", Compos. Struct., 117, 309-315. https://doi.org/10.1016/j.compstruct.2014.07.002.
  20. Bellifa, H., Selim, M.M., Chikh, A., Bousahla, A.A., Bourada, F., Tounsi, A., Benrahou, K.H., Al-Zahrani, M.M. and Tounsi A. (2021), "Influence of porosity on thermal buckling behavior of functionally graded beams", Smart. Struct. Syst., 27(4), 719-728. https://doi.org/10.12989/sss.2021.27.4.719.
  21. Bellman, R., Kashef, B.J. and Casti, J. (1972), "Differential quadrature: a technique for the rapid solution of nonlinear partial differential equations", J. Comput. Phys., 10(1), 40-52. https://doi.org/10.1016/0021-9991(72)90089-7.
  22. Bert, C.W. and Malikm, M. (1996), "Differential quadrature method in computational mechanics: a review", Appl. Mech. Rev., 49(1), 1-28. https://doi.org/10.1115/1.3101882.
  23. Brischetto, S., Leetsch, R., Carrera, E., Wallmersperger, T. and Kroplin, B. (2008), "Thermo-mechanical bending of functionally graded plates", J. Therm. Stresses, 31(3), 286-308. https://doi.org/10.1080/01495730701876775.
  24. Carrera, E. (2002), "Theories and finite elements for multilayered, anisotropic, composite plates and shells", Arch. Comput. Meth. Eng., 9(2), 87-140. https://doi.org/10.1007/BF02736649.
  25. Casmed, C.A., Gordon, F., Bernard, K.A. and Sylvester, A. (2021), "Geostatistical approach for the estimation of shearhosted gold deposit: A case study of the Obuasi gold deposit, Ghana". Malays. J. Geosci., 5(2), 76-84.
  26. Chen, F., Jin, Z., Wang, E., Wang, L., Jiang, Y., Guo, P., Gao, S. and He, X. (2021), "Relationship model between surface strain of concrete and expansion force of reinforcement rust". Sci. Rep., 11, 4208. https://doi.org/10.1038/s41598-021-83376-w.
  27. Cheng, Z.Q. and Batra, R.C. (2000), "Deflection relationships between the homogeneous Kirchhoff plate theory and different functionally graded plate theories", Arch. Mech., 52(1), 143-158.
  28. Cheng, X. (2018), Thermal Elastic Mechanics Problems of Concrete Rectangular Thin Plate, Springer Tracts in Civil Engineering, Mainland, China.
  29. Ching, H.K. and Yen, S.C. (2005), "Meshless local Petrov-Galerkin analysis for 2D functionally graded elastic solids under mechanical and thermal loads", Compos. B: Eng., 36(3), 223-240. https://doi.org/10.1016/j.compositesb.2004.09.007.
  30. Chung, Y.L. and Chen, W.T. (2007), "The flexibility of functionally graded material plates subjected to uniform loads", J. Mech. Mater. Struct., 2(1), 63-86. https://doi.org/10.2140/jomms.2007.2.63.
  31. Chu, Y.M. Shankaralingappa, B.M., Gireesha, B.J., Alzahrani, F., Ijaz Khan, M. and Khan, S.U. (2021), "Combined impact of Cattaneo-Christov double diffusion and radiative heat flux on bio-convective flow of Maxwell liquid configured by a stretched nano-material surface", Appl. Math. Comput., https://doi.org/10.1016/j.amc.2021.126883.
  32. Chu, Y.M. Nazir, U., Sohail, M., Selim, M.M. and Lee, J.R. (2021), "Enhancement in thermal energy and solute particles using hybrid nanoparticles by engaging activation energy and chemical reaction over a parabolic surface via finite element approach", Fractal. Fract., 5(3), Article 119, 17 pages. https://doi.org/10.3390/fractalfract5030119.
  33. Dai, Z., Jiang, Z., Zhang, L. and Habibi, M. (2021), "Frequency characteristics and sensitivity analysis of a size-dependent laminated nanoshell", Adv. Nano. Res., 10(2), 175-189. https://doi.org/10.12989/anr.2021.10.2.175.
  34. Dai, Z., Zhang, L., Bolandi, S.Y. and Habibi, M. (2021), "On the vibrations of the non-polynomial viscoelastic composite open-type shell under residual stresses", Compos. Struct., 263, 113599. https://doi.org/10.1016/j.compstruct.2021.113599.
  35. Ghorbanpour Arani, A., Kiani, F. and Afshari, H. (2019), "Aeroelastic analysis of laminated FG-CNTRC cylindrical panels under yawed supersonic flow", Int. J. Appl. Mech., 11(6), 1950052. https://doi.org/10.1142/S1758825119500522.
  36. Ghorbanpour Arani, A., Kiani, F. and Afshari, H. (2021), "Free and forced vibration analysis of laminated functionally graded CNT-reinforced composite cylindrical panels", J. Sandw. Struct. Mater., 23(1), 255-278. https://doi.org/10.1177/1099636219830787.
  37. Golmakaniyoon, S. and Akhlaghi, F. (2016), "Time-dependent creep behavior of Al-SiC functionally graded beams under in-plane thermal loading", Comput. Mater. Sci., 121, 182-190. https://doi.org/10.1016/j.commatsci.2016.04.038.
  38. Heidari, Y., Arefi, M. and Irani-Rahaghi, M. (2021), "Free vibration analysis of cylindrical micro/nano-shell reinforced with CNTRC patches", Int. J. Appl. Mech., 13(4), 2150040. https://doi.org/10.1142/S175882512150040X
  39. Hajiseyedazizi, S.N., Samei, M.E., Alzabut, J. and Chu, Y.M. (2021), "On multi-step methods for singular fractional $q$-integro-differential equations", Open. Math., 19, 1-28. https://doi.org/10.1515/math-2021-0093
  40. Habibi, M., Darabi, R., Sa, J.C.D. and Reis, A. (2021), "An innovation in finite element simulation via crystal plasticity assessment of grain morphology effect on sheet metal formability", Proc. the Inst. Mech. Eng., Part L: J. Mater: Design. Appl., 235(8), 1937-1951. https://doi.org/10.1177/14644207211024686.
  41. Hosseini-Hashemi, S. and Khaniki, H.B. (2018), "Three dimensional dynamic response of functionally graded nanoplates under a moving load", Struct. Eng. Mech., 66(2), 249-262. https://doi.org/10.12989/sem.2018.66.2.249.
  42. Huang, X., Hao, H., Oslub, K., Habibi, M. and Tounsi, A. (2021), "Dynamic stability/instability simulation of the rotary size-dependent functionally graded microsystem", Eng. Comput., 1-17. https://doi.org/10.1007/s00366-021-01399-3.
  43. Huang, X., Zhang, Y., Moradi, Z. and Shafiei, N. (2021), "Computer simulation via a couple of homotopy perturbation methods and the generalized differential quadrature method for nonlinear vibration of functionally graded non-uniform micro-tube", Eng. Comput., 1-18. https://doi.org/10.1007/s00366-021-01395-7.
  44. Huang, X., Zhu, Y., Vafaei, P., Moradi, Z. and Davoudi, M. (2021), "An iterative simulation algorithm for large oscillation of the applicable 2D-electrical system on a complex nonlinear substrate", Eng. Comput., 1-13. https://doi.org/10.1007/s00366-021-01320-y.
  45. Huang, K., Su, B., Li, T., Ke, H., Lin, M. and Wang, Q. (2022). "Numerical simulation of the mixing behaviour of hot and cold fluids in the rectangular T-junction with/without an impeller". Appl. Therm. Eng., 204, 117942. https://doi.org/10.1016/j.applthermaleng.2021.117942.
  46. Huo, J., Zhang, G., Ghabussi, A. and Habibi, M. (2021), "Bending analysis of FG-GPLRC axisymmetric circular/annular sector plates by considering elastic foundation and horizontal friction force using 3D-poroelasticity theory", Compos. Struct., 276, 114438. https://doi.org/10.1016/j.compstruct.2021.114438.
  47. Iqbal, M.A., Wang, Y., Miah, M.M. and Osman, M.S. (2022), "Study on date-Jimbo-Kashiwara-Miwa equation with conformable derivative dependent on time parameter to find the exact dynamic wave solutions", Fractal. Fract., 6(1), Article 4. https://doi.org/10.3390/fractalfract6010004.
  48. Jia, D., Li, C., Zhang, D., Zhang, Y. and Zhang, X. (2014), "Experimental verification of nanoparticle jet minimum quantity lubrication effectiveness in grinding", J. Nanoparticle. Res., 16(12), 1-15.
  49. Jin, F., Qian, Z.S., Chu, Y.M. and Rahman, M. ur (2022), "On nonlinear evolution model for drinking behavior under Caputo-Fabrizio derivative", J. Appl. Anal. Comput., https://doi.org/10.11948/20210357.
  50. Kiani, K., Gharebaghi, S. A. and Mehri, B. (2017), "In-plane and out-of-plane waves in nanoplates immersed in bidirectional magnetic fields", Struct. Eng. Mech., 61(1), 65-76. https://doi.org/10.12989/sem.2017.61.1.065.
  51. Khoshgoftar, M., Rahimi, M.J. and Arefi, G.H. (2013), "Exact solution of functionally graded thick cylinder with finite length under longitudinally non-uniform pressure", Mech. Res. Com., 51, 61-66. https://doi.org/10.1016/j.mechrescom.2013.05.001.
  52. Kholdi, M., Rahimi, G., Loghman, A., Ashrafi, H. and Arefi, M. (2022), "Analysis of thick-walled spherical shells subjected to various temperature gradients: Thermo-elasto-plastic and residual stress studies", Int. J. Appl. Mech., 2150105.
  53. Li, X., Ding, H. and Chen, W. (2008), "Elasticity solutions for a transversely isotropic functionally graded circular plate subject to an axisymmetric transverse load qrk", Int. J. Solids. Struct., 45(1), 191-210. https://doi.org/10.1016/j.ijsolstr.2007.07.023.
  54. Li, J., Xu, K., Chaudhuri, S., Yumer, E., Zhang, H. and Guibas, L. (2017). "GRASS: generative recursive autoencoders for shape structures". ACM Transac. on Fraph., 36(4), 1-14. https://doi.org/10.1145/3072959.3073637
  55. Liu, Y., Wang, W.,He, T., Moradi, Z. and Benitez, M.A.L. (2021a), "On the modelling of the vibration behaviors viadiscrete singular convolution method forahigh-order sector annular system", Eng. Comput., https://doi.org/10.1007/s00366-021-01454-z.
  56. Liu, Z., Wu, X., Yu, M., and Habibi, M. (2020), "Large-amplitude dynamical behavior of multilayer graphene platelets reinforced nanocomposite annular plate under thermo-mechanical loadings", Mech. Based. Des. Struct., 1-25. https://doi.org/10.1080/15397734.2020.1815544.
  57. Liu, Z., Su, S., Xi, D. and Habibi, M. (2020), "Vibrational responses of a MHC viscoelastic thick annular plate in thermal environment using GDQ method", Mech. Based. Des. Struct., 1-26. https://doi.org/10.1080/15397734.2020.1784201.
  58. Liu, C., Zhao, Y., Wang, Y., Zhang, T. and Jia, H. (2021b), "Hybrid dynamic modeling and analysis of high-speed thin-rimmed gears", ASME. J. Mech. Des., 143(12):123401. https://doi.org/10.1115/1.4051137.
  59. Lu, N., Wang, H., Wang, K., & Liu, Y. (2021). "Maximum probabilistic and dynamic traffic load effects on short-to-medium span bridges", Cmes-Comput. Model. Eng. Sci., 127(1), 345-360. https://doi.org/10.32604/cmes.2021.013792.
  60. Lu, C., Lim, C.W. and Chen, W. (2009), "Semi-analytical analysis for multi-directional functionally graded plates:3-D elasticity solutions", Int. J. Numer. Meth. Eng., 79(1), 25-44. https://doi.org/10.1002/nme.2555.
  61. Ma, L., Liu, X. and Moradi, Z. (2021), "On the chaotic behavior of graphene-reinforced annular systems under harmonic excitation", Eng. Comput., 1-25. https://doi.org/10.1007/s00366-020-01210-9.
  62. Ma, L. and Wang, T. (2004), "Relationships between axisymmetric bending and buckling solutions of FGM circular plates based on third-order plate theory and classical plate theory", Int. J. Solids. Struct., 41(1), 85-101. https://doi.org/10.1016/j.ijsolstr.2003.09.008.
  63. Matouk, H., Bousahla, A.A., Heireche, H., Bourada, F., Bedia, E., Tounsi, A. and Benrahou, K.H. (2020), "Investigation on hygro-thermal vibration of P-FG and symmetric S-FG nanobeam using integral Timoshenko beam theory", Adv. Nano. Res., 8(4), 293-305. https://doi.org/10.12989/anr.2020.8.4.293.
  64. Merazka, B., Bouhadra, A., Menasria, A., Selim, M.M., Bousahla, A.A., Bourada, F., Tounsi, A., Benrahou, K.H. and Al-Zahrani, M.M. (2021), "Hygro-thermo-mechanical bending response of FG plates resting on elastic foundations", Steel. Compos. Struct., 39(5), 631-643. https://doi.org/10.12989/scs.2021.39.5.631.
  65. Moradi, Z., Davoudi, M., Ebrahimi, F. and Ehyaei, A.F. (2021), "Intelligent wave dispersion control of an inhomogeneous micro-shell using a proportional-derivative smart controller", Waves. Rand. Complex. Media, 1-24. https://doi.org/10.1080/17455030.2021.1926572.
  66. Mou, B. and Bai, Y. (2018). "Experimental investigation on shear behavior of steel beam-to-CFST column connections with irregular panel zone". Eng. Struct., 168, 487-504. https://doi.org/10.1016/j.engstruct.2018.04.029.
  67. Mudhaffar, I.M., Tounsi, A., Chikh, A., Al-Osta, M.A., Al-Zahrani, M.M. and Al-Dulaijan, S.U. (2021), "Hygro-thermomechanical bending behavior of advanced functionally graded ceramic metal plate resting on a viscoelastic foundation", Struct., https://doi.org/10.1016/j.istruc.2021.05.090.
  68. Najaafi, N., Jamali, M., Habibi, M., Sadeghi, S., Jung, D.W. and Nabipour, N. (2021), "Dynamic instability responses of the substructure living biological cells in the cytoplasm environment using stress-strain size-dependent theory", J. Biomolec. Struct. Dyn., 39(7), 2543-2554. https://doi.org/10.1080/07391102.2020.1751297.
  69. Nasution, M.K., Syah, R., Ramdan, D., Afshari, H., Amirabadi, H., Selim, M.M., Khan, A., Rahman, M.L. Sarjadi, M.S. and Su, C.H. (2022), "Modeling and computational simulation for supersonic flutter prediction of polymer/GNP/fiber laminated composite joined conical-conical shells", Arab. J. Chem., 15(1), 103460. https://doi.org/10.1016/j.arabjc.2021.103460.
  70. Nazeer, M., Hussain, F., Ijaz Khan, M., Asad-ur-Rehman, El-Zahar, E.R., Chu, Y.M. and Malik, M.Y. (2021), "Theoretical study of MHD electro-osmotically flow of third-grade fluid in micro channel", Appl. Math. Comput., 420, https://doi.org/10.1016/j.amc.2021.126868.
  71. Nie, G. and Zhong, Z. (2007), "Semi-analytical solution for three-dimensional vibration of functionally graded circular plates", Comput. Meth. Appl. Mech. Eng., 196(49-52), 4901-4910. https://doi.org/10.1016/j.cma.2007.06.028.
  72. Qiao, W., Li, Z., Liu, W. and Liu, E. (2022), "Fastest-growing source prediction of US electricity production based on a novel hybrid model using wavelet transform", Int. J. Energy. Res., 46(2), 1766-1788. https://doi.org/10.1002/er.7293
  73. Qiao, W., Wang, Y., Zhang, J., Tian, W., Tian, Y. and Yang, Q. (2021), "An innovative coupled model in view of wavelet transform for predicting short-term PM10 concentration", J. Environ. Manag., 289, 112438. https://doi.org/10.1016/j.jenvman.2021.112438.
  74. Reddy, J.N. (2007), Theory and Analysis of Elastic Plates and Shells, Taylor & Francis, Boca Raton, Florida, United States.
  75. Reddy, J., Wang, C. and Kitipornchai, S. (1999), "Axisymmetric bending of functionally graded circular and annular plates", Eur. J. Mech.-A/Solids, 18(2), 185-199. https://doi.org/10.1016/S0997-7538(99)80011-4.
  76. Refrafi, S., Bousahla, A.A., Bouhadra, A., Menasria, A., Bourada, F., Tounsi, A., Bedia, E.A., Mahmoud, S., Benrahou, K.H. and Tounsi, A. (2020), "Effects of hygro-thermo-mechanical conditions on the buckling of FG sandwich plates resting on elastic foundations", Comput. Concrete, 25(4), 311-325. https://doi.org/10.12989/cac.2020.25.4.311.
  77. Rashid, S., Sultana, S., Karaca, Y., Khalid, A. and Chu, Y.M. (2022a), "Some further extensions considering discrete proportional fractional operators", Fractals, 30(1), 2240026. https://10.1142/S0218348X22400266.
  78. Rashid, S., Abouelmagd, E.I., Khalid, A., Farooq, F.B. and Chu, Y.M. (2022b), "Some recent developments on dynamical $\hbar$-discrete fractional type inequalities in the frame of nonsingular and nonlocal kernels", Fractals, 30(2), 2240110. https://10.1142/S0218348X22401107.
  79. Shao, Y., Zhao, Y., Gao, J. and Habibi, M. (2021), "Energy absorption of the strengthened viscoelastic multi-curved composite panel under friction force", Arch. Civil. Mech. Eng., 21(4), 1-29. https://doi.org/10.1007/s43452-021-00279-3.
  80. Shi, X., Li, J. and Habibi, M. (2020), "On the statics and dynamics of an electro-thermo-mechanically porous GPLRC nanoshell conveying fluid flow", Mech. Based. Des. Struct., 1-37. https://doi.org/10.1080/15397734.2020.1772088.
  81. Sobhy, M. (2017), "Hygro-thermo-mechanical vibration and buckling of exponentially graded nanoplates resting on elastic foundations via nonlocal elasticity theory", Struct. Eng. Mech., 63(3), 401-415. https://doi.org/10.12989/sem.2017.63.3.401.
  82. Song, Y.Q., Zhao, T.H., Chu, Y.M. and Zhang, X.H. (2015), "Optimal evaluation of a Toader-type mean by power mean", J. Inequal. Appl., 408. https://doi.org/10.1186/s13660-015-0927-6.
  83. Tahir, S.I., Chikh, A., Tounsi, A., Al-Osta, M.A., Al-Dulaijan, S. U. and Al-Zahrani, M.M. (2021), "Wave propagation analysis of a ceramic-metal functionally graded sandwich plate with different porosity distributions in a hygro-thermal environment", Compos. Struct., 269, 114030. https://doi.org/10.1016/j.compstruct.2021.114030.
  84. Torabi, K. and Afshari, H. (2017), "Optimization for flutter boundaries of cantilevered trapezoidal thick plates", J. Braz. Soc. Mech. Sci. Eng., 39(5), 1545-1561. https://doi.org/10.1177/1099636217697492.
  85. Tounsi, A., Al-Dulaijan, S., Al-Osta, M.A., Chikh, A., Al-Zahrani, M., Sharif, A. and Tounsi, A. (2020), "A four variable trigonometric integral plate theory for hygro-thermo-mechanical bending analysis of AFG ceramic-metal plates resting on a two-parameter elastic foundation", Steel. Compos. Struct., 34(4), 511-524. https://doi.org/10.12989/scs.2020.34.4.511.
  86. Wang, F.Z., Khan, M.N., Ahmad, I., Ahmad, H., Abu-Zinadah, H. and Chu, Y.M. (2022a), "Numerical solution of traveling waves in chemical kinetics: time-fractional fishers equations", Fractals, 30(2), 22400051, https://10.1142/S0218348X22400515.
  87. Wang, Z., Yu, S., Xiao, Z. and Habibi, M. (2020), "Frequency and buckling responses of a high-speed rotating fiber metal laminated cantilevered microdisk", Mech. Adv. Mater. Struct., 1-14. https://doi.org/10.1080/15376494.2020.1824284.
  88. Wang, K., Wang, H. and Li, S. (2022b). "Renewable quantile regression for streaming datasets". Knowledge-based Syst., 235, 107675. https://doi.org/10.1016/j.knosys.2021.107675.
  89. Wang, M.K., Hong, M.Y., Xu, Y.F., Shen, Z.H. and Chu, Y.M. (2020), "Inequalities for generalized trigonometric and hyperbolic functions with one parameter", J. Math. Inequal., 14(1), 1-21. https://dx.doi.org/10.7153/jmi-2020-14-01.
  90. Wei, J., Xie, Z., Zhang, W., Luo, X., Yang, Y. and Chen, B. (2021), "Experimental study on circular steel tube-confined reinforced UHPC columns under axial loading", Eng. Struct., 230, 111599. doi: 10.1016/j.engstruct.2020.111599.
  91. Xu, W., Pan, G., Moradi, Z. and Shafiei, N. (2021), "Nonlinear forced vibration analysis of functionally graded non-uniform cylindrical microbeams applying the semi-analytical solution", Compos. Struct., 275, 114395. https://doi.org/10.1016/j.compstruct.2021.114395.
  92. Xiao, X., Bu, G., Ou, Z. and Li, Z. (2022a), "Nonlinear in-plane instability of the confined FGP arches with nanocomposites reinforcement under radially-directed uniform pressure", Eng. Struct., 252, 113670. https://doi.org/10.1016/j.engstruct.2021.113670.
  93. Xiao, G., Chen, B., Li, S. and Zhuo, X. (2022b), "Fatigue life analysis of aero-engine blades for abrasive belt grinding considering residual stress". Eng. Fail. Analys., 131, 105846. https://doi.org/10.1016/j.engfailanal.2021.105846.
  94. Yu, X., Sun, Y., Zhao, D. and Wu, S. (2021), "A revised contact stiffness model of rough curved surfaces based on the length scale". Tribology. Int., 164. https://doi.org/10.1016/j.triboint.2021.107206.
  95. Yang, M., Li, C., Zhang, Y., Jia, D., Zhang, X., Hou, Y., Li, R. and Wang, J. (2017), "Maximum undeformed equivalent chip thickness for ductile-brittle transition of zirconia ceramics under different lubrication conditions", Int. J. Mach. Tool. Manufact., 122, 55-65. https://doi.org/10.1016/j.ijmachtools.2017.06.003
  96. Yang, M., Li, C., Zhang, Y., Jia, D., Li, R., Hou, Y., Cao, H. and Wang, J. (2019a), "Predictive model for minimum chip thickness and size effect in single diamond grain grinding of zirconia ceramics under different lubricating conditions", Ceram. Int., 45(12), 14908-14920. https://doi.org/10.1016/j.ceramint.2019.04.226
  97. Yang, M., Li, C., Zhang, Y., Jia, D., Li, R., Hou, Y. and Cao, H. (2019b). "Effect of friction coefficient on chip thickness models in ductile-regime grinding of zirconia ceramics", The. Int. J. Adv. Manufact. Techn., 102(5), 2617-2632. https://doi.org/10.1007/s00170-019-03367-0
  98. Zaitoun, M.W., Chikh, A., Tounsi, A., Al-Osta, M.A., Sharif, A., Al-Dulaijan, S.U. and Al-Zahrani, M.M. (2022), "Influence of the visco-Pasternak foundation parameters on the buckling behavior of a sandwich functional graded ceramic-metal plate in a hygrothermal environment", Thin-Wall. Struct., 170, 108549. https://doi.org/10.1016/j.tws.2021.108549.
  99. Zaitoun, M.W., Chikh, A., Tounsi, A., Sharif, A., Al-Osta, M.A., Al-Dulaijan, S.U. and Al-Zahrani, M.M. (2021), "An efficient computational model for vibration behavior of a functionally graded sandwich plate in a hygrothermal environment with viscoelastic foundation effects", Eng. Comput., 1-15. https://doi.org/10.1007/s00366-021-01498-1.
  100. Zenkour, A.M. (2009), "The refined sinusoidal theory for FGM plates on elastic foundations", Int. J. Mech. Sci., 51(11-12), 869-880. https://doi.org/10.1016/j.ijmecsci.2009.09.026.
  101. Zenkour, A.M. (2018), "Bending of thin rectangular plates with variable-thickness in a hygrothermal environment", Thin-Wall. Struct., 123, 333-340. https://doi.org/10.1016/j.tws.2017.11.038.
  102. Zhang, L., Chen, Z., Habibi, M., Ghabussi, A. and Alyousef, R. (2021a), "Low-velocity impact, resonance, and frequency responses of FG-GPLRC viscoelastic doubly curved panel", Compos. Struct., 269, 114000. https://doi.org/10.1016/j.compstruct.2021.114000.
  103. Zhang, W. and Tang, Z. (2021b). "Numerical modeling of response of CFRP-concrete interfaces subjected to fatigue loading", J. Compos. Construct., 25(5). https://doi.org/10.1061/(ASCE)CC.1943-5614.0001154.
  104. Zhang, H., Liu, Y. and Deng, Y. (2021c), "Temperature gradient modeling of a steel box-girder suspension bridge using Copulas probabilistic method and field monitoring", Adv. Struct. Eng., 24(5), 947-961. https://doi.org/10.1177/1369433220971779.
  105. Zhang, Y., Li, C., Ji, H., Yang, X., Yang, M., Jia, D., Zhang, X., Li, R. and Wang, J. (2017), "Analysis of grinding mechanics and improved predictive force model based on material-removal and plastic-stacking mechanisms", Int. J. Mach. Tool. Manufact., 122, 81-97. https://doi.org/10.1016/j.ijmachtools.2017.06.002
  106. Zhang, D., Li, C., Zhang, Y., Jia, D. and Zhang, X. (2015), "Experimental research on the energy ratio coefficient and specific grinding energy in nanoparticle jet MQL grinding", The. Int. J. Adv. Manufact. Techn., 78(5), 1275-1288. https://doi.org/10.1007/s00170-014-6722-6
  107. Zhang, J., Li, C., Zhang, Y., Yang, M., Jia, D., Liu, G., Hou, Y., Li, R., Zhang, N., Wu, Q. and Cao, H. (2018), "Experimental assessment of an environmentally friendly grinding process using nanofluid minimum quantity lubrication with cryogenic air", J. Cleaner. Product., 193, 236-248. https://doi.org/10.1016/j.jclepro.2018.05.009
  108. Zhang, S., Pak, R.Y.S. and Zhang, J. (2021), "Three-dimensional frequency-domain Green's functions of a finite fluid-saturated soil layer underlain by rigid bedrock to interior loadings". Int. J. Geomech., 22(1), https://doi.org/10.1061/(ASCE)GM.1943-5622.0002235.
  109. Zhang, S.W., Shang, L.Y., Zhou, L. and Lv, Z.B. (2022), "Hydrate deposition model and flow assurance technology in gas-dominant pipeline transportation systems: A review", Energ. Fuel., https://doi.org/10.1021/acs.energyfuels.1c03812
  110. Zhao, Y., Moradi, Z., Davoudi, M. and Zhuang, J. (2021a), "Bending and stress responses of the hybrid axisymmetric system via state-space method and 3D-elasticity theory", Eng. Comput., 1-23. https://doi.org/10.1007/s00366-020-01242-1.
  111. Zhao, T.H. Khan, M.I. and Chu, Y.M. (2021b), "Artificial neural networking (ANN) analysis for heat and entropy generation in flow of non-Newtonian fluid between two rotating disks", Math. Meth. Appl. Sci., https://doi.org/10.1002/mma.7310
  112. Zhao, T.H., Khan, M.I. and Chu, Y.M. (2021c), "Artificial neural networking (ANN) analysis for heat and entropy generation in flow of non-Newtonian fluid between two rotating disks", Math. Meth. Appl. Sci., https://doi.org/10.1002/mma.7310.
  113. Zhong, Z. and Shang, E. (2008), "Closed-form solutions of three-dimensional functionally graded plates", Mech. Adv. Mater. Struct., 15(5), 355-363. https://doi.org/10.1080/15376490801977528.