• 제목/요약/키워드: PointNet++

검색결과 630건 처리시간 0.025초

The optimization study of core power control based on meta-heuristic algorithm for China initiative accelerator driven subcritical system

  • Jin-Yang Li;Jun-Liang Du;Long Gu;You-Peng Zhang;Cong Lin;Yong-Quan Wang;Xing-Chen Zhou;Huan Lin
    • Nuclear Engineering and Technology
    • /
    • 제55권2호
    • /
    • pp.452-459
    • /
    • 2023
  • The core power control is an important issue for the study of dynamic characteristics in China initiative accelerator driven subcritical system (CiADS), which has direct impact on the control strategy and safety analysis process. The CiADS is an experimental facility that is only controlled by the proton beam intensity without considering the control rods in the current engineering design stage. In order to get the optimized operation scheme with the stable and reliable features, the variation of beam intensity using the continuous and periodic control approaches has been adopted, and the change of collimator and the adjusting of duty ratio have been proposed in the power control process. Considering the neutronics and the thermal-hydraulics characteristics in CiADS, the physical model for the core power control has been established by means of the point reactor kinetics method and the lumped parameter method. Moreover, the multi-inputs single-output (MISO) logical structure for the power control process has been constructed using proportional integral derivative (PID) controller, and the meta-heuristic algorithm has been employed to obtain the global optimized parameters for the stable running mode without producing large perturbations. Finally, the verification and validation of the control method have been tested based on the reference scenarios in considering the disturbances of spallation neutron source and inlet temperature respectively, where all the numerical results reveal that the optimization method has satisfactory performance in the CiADS core power control scenarios.

Study of hydrodynamics and iodine removal by self-priming venturi scrubber

  • Jawaria Ahad;Talha Rizwan ;Amjad Farooq ;Khalid Waheed ;Masroor Ahmad ;Kamran Rasheed Qureshi ;Waseem Siddique ;Naseem Irfan
    • Nuclear Engineering and Technology
    • /
    • 제55권1호
    • /
    • pp.169-179
    • /
    • 2023
  • Filtered containment system is a passive safety system that controls the over-pressurization of containment in case of a design-based accidents by venting high pressure gaseous mixture, consisting of air, steam and radioactive particulate and gases like iodine, via a scrubbing system. An indigenous lab scale facility was developed for research on iodine removal by venturi scrubber by simulating the accidental scenario. A mixture of 0.2 % sodium thiosulphate and 0.5 % sodium hydroxide, was used in scrubbing column. A modified mathematical model was presented for iodine removal in venturi scrubber. Improvement in model was made by addition of important parameters like jet penetration length, bubble rise velocity and gas holdup which were not considered previously. Experiments were performed by varying hydrodynamic parameters like liquid level height and gas flow rates to see their effect on removal efficiency of iodine. Gas holdup was also measured for various liquid level heights and gas flowrates. Removal efficiency increased with increase in liquid level height and gas flowrate up to an optimum point beyond that efficiency was decreased. Experimental results of removal efficiency were compared with the predicted results, and they were found to be in good agreement. Maximum removal efficiency of 99.8% was obtained.

Geochemical and S isotopic studies of pollutant evolution in groundwater after acid in situ leaching in a uranium mine area in Xinjiang

  • Zhenzhong Liu;Kaixuan Tan;Chunguang Li;Yongmei Li;Chong Zhang;Jing Song;Longcheng Liu
    • Nuclear Engineering and Technology
    • /
    • 제55권4호
    • /
    • pp.1476-1484
    • /
    • 2023
  • Laboratory experiments and point monitoring of reservoir sediments have proven that stable sulfate reduction (SSR) can lower the concentrations of toxic metals and sulfate in acidic groundwater for a long time. Here, we hypothesize that SSR occurred during in situ leaching after uranium mining, which can impact the fate of acid groundwater in an entire region. To test this, we applied a sulfur isotope fractionation method to analyze the mechanism for natural attenuation of contaminated groundwater produced by acid in situ leaching of uranium (Xinjiang, China). The results showed that δ34S increased over time after the cessation of uranium mining, and natural attenuation caused considerable, area-scale immobilization of sulfur corresponding to retention levels of 5.3%-48.3% while simultaneously decreasing the concentration of uranium. Isotopic evidence for SSR in the area, together with evidence for changes of pollutant concentrations, suggest that area-scale SSR is most likely also important at other acid mining sites for uranium, where retention of acid groundwater may be strengthened through natural attenuation. To recapitulate, the sulfur isotope fractionation method constitutes a relatively accurate tool for quantification of spatiotemporal trends for groundwater during migration and transformation resulting from acid in situ leaching of uranium in northern China.

Convergence study of traditional 2D/1D coupling method for k-eigenvalue neutron transport problems with Fourier analysis

  • Boran Kong ;Kaijie Zhu ;Han Zhang ;Chen Hao ;Jiong Guo ;Fu Li
    • Nuclear Engineering and Technology
    • /
    • 제55권4호
    • /
    • pp.1350-1364
    • /
    • 2023
  • 2D/1D coupling method is an important neutron transport calculation method due to its high accuracy and relatively low computation cost. However, 2D/1D coupling method may diverge especially in small axial mesh size. To analyze the convergence behavior of 2D/1D coupling method, a Fourier analysis for k-eigenvalue neutron transport problems is implemented. The analysis results present the divergence problem of 2D/1D coupling method in small axial mesh size. Several common attempts are made to solve the divergence problem, which are to increase the number of inner iterations of the 2D or 1D calculation, and two times 1D calculations per outer iteration. However, these attempts only could improve the convergence rate but cannot deal with the divergence problem of 2D/1D coupling method thoroughly. Moreover, the choice of axial solvers, such as DGFEM SN and traditional SN, and its effect on the convergence behavior are also discussed. The results show that the choice of axial solver is a key point for the convergence of 2D/1D method. The DGFEM SN based 2D/1D method could converge within a wide range of optical thickness region, which is superior to that of traditional SN method.

Observation of reinforcing fibers in concrete upon bending failure by X-ray computed tomographic imaging

  • Seok Yong Lim;Kwang Soo Youm;Kwang Yeom Kim;Yong-Hoon Byun;Young K. Ju;Tae Sup Yun
    • Computers and Concrete
    • /
    • 제31권5호
    • /
    • pp.433-442
    • /
    • 2023
  • This study presents the visually observed behavior of fibers embedded in concrete samples that were subjected to a flexural bending test. Three types of fibers such as macro polypropylene, macro polyethylene, and the hybrid of steel and polyvinyl alcohol were mixed with cement by a designated mix ratio to prepare a total of nine specimens of each. The bending test was conducted by following ASTM C1609 with a net deflection of 2, 4, and 7 mm. The X-ray computed tomography (XCT) was carried out for 7 mm-deflection specimens. The original XCT images were post-processed to denoise the beam-hardening effect. Then, fiber, crack, and void were semi-manually segmented. The hybrid specimen showed the highest toughness compared to the other two types. Debonding based on 2D XCT sliced images was commonly observed for all three groups. The cement matrix near the crack surface often involved partially localized breakage in conjunction with debonding. The pullout was predominant for steel fibers that were partially slipped toward the crack. Crack bridging and rupture were not found presumably due to the image resolution and the level of energy dissipation for poly-fibers, while the XCT imaging was advantageous in evaluating the distribution and behavior of various fibers upon bending for fiber-reinforced concrete beam elements.

Real-time wireless marine radioactivity monitoring system using a SiPM-based mobile gamma spectroscopy mounted on an unmanned marine vehicle

  • Min Sun Lee;Soo Mee Kim;Mee Jang;Hyemi Cha;Jung-Min Seo;Seungjae Baek;Jong-Myoung Lim
    • Nuclear Engineering and Technology
    • /
    • 제55권6호
    • /
    • pp.2158-2165
    • /
    • 2023
  • Marine radioactivity monitoring is critical for taking immediate action in case of unexpected nuclear accidents at nuclear facilities located near coastal areas. Especially when the level of contamination is not predictable, mobile monitoring systems will be useful for wide-area ocean radiation survey and for determination of the level of radioactivity. Here, we used a silicon photomultiplier and a high-efficiency GAGG crystal to fabricate a compact, battery-powered gamma spectroscopy that can be used in an ocean environment. The developed spectroscopy has compact dimensions of 6.5 × 6.5× 8 cm3 and weighs 560 g. We used LoRa, a low-power wireless protocol for communication. Successful data transmission was achieved within 1.4 m water depth. The developed gamma spectroscopy was able to detect radioactivity from a 137Cs point source (3.7 kBq) at a distance of 20 cm in water. Moreover, we demonstrated an unmanned radioactivity monitoring system in a real sea by combining unmanned surface vehicle with the developed gamma spectroscopy. A hidden 137Cs source (3.07 MBq) was detected by the unmanned system at a distance of 3 m. After successfully testing the developed mobile spectroscopy in an ocean environment, we believe that our proposed system will be an effective solution for mobile real-time marine radioactivity monitoring.

Radiological safety analysis of a newly designed spent resin mixture treatment facility during normal and abnormal operational scenarios for the safety of radiation workers

  • Jaehoon Byun;Seungbin Yoon;Hee Reyoung Kim
    • Nuclear Engineering and Technology
    • /
    • 제55권5호
    • /
    • pp.1935-1945
    • /
    • 2023
  • The radiological safety of workers in a newly developed microwave-based spent resin treatment facility was assessed based on work location and operational scenarios. The results show that the remote-operation room worker was exposed to maximum annual dose of 3.19E+00 mSv, which is 15.9% of the dose limit, thereby confirming radiological safety. Inside the pathway, annual doses in the range of 7.87E-02-2.07E-01 mSv were measured initially at the mock-up tank and later at the point between the spent resin separation and treatment parts. The dose of emergency maintenance workers was below the dose limit (4.08E-03-4.99E+00 mSv); however, before treatment (separation and microwave), the dose of maintenance and repair workers exceeded the dose limit. The doses of the effluent removal workers at the zeolite and activated carbon storage tank and spent resin storage tank were the lowest at 2.79E-01-2.87E-01 mSv and 9.27E-01 mSv in "1 h" and "4-5 h of operation", respectively. The immediately lower and upper layers of the facility room exhibited the highest annual doses of 1.84E+00 and 3.22E+00 mSv, respectively. Through this study, a scenario that can minimize the dose considering the movement of spent resin through the facility can be developed.

Development of simultaneous multi-channel data acquisition system for large-area Compton camera (LACC)

  • Junyoung Lee;Youngmo Ku;Sehoon Choi;Goeun Lee ;Taehyeon Eom ;Hyun Su Lee ;Jae Hyeon Kim ;Chan Hyeong Kim
    • Nuclear Engineering and Technology
    • /
    • 제55권10호
    • /
    • pp.3822-3830
    • /
    • 2023
  • The large-area Compton camera (LACC), featuring significantly high detection sensitivity, was developed for high-speed localization of gamma-ray sources. Due to the high gamma-ray interaction event rate induced by the high sensitivity, however, the multiplexer-based data acquisition system (DAQ) rapidly saturated, leading to deteriorated energy and imaging resolution at event rates higher than 4.7 × 103 s-1. In the present study, a new simultaneous multi-channel DAQ was developed to improve the energy and imaging resolution of the LACC even under high event rate conditions (104-106 s-1). The performance of the DAQ was evaluated with several point sources under different event rate conditions. The results indicated that the new DAQ offers significantly better performance than the existing DAQ over the entire energy and event rate ranges. Especially, the new DAQ showed high energy resolution under very high event rate conditions, i.e., 6.9% and 8.6% (for 662 keV) at 1.3 × 105 and 1.2 × 106 s-1, respectively. Furthermore, the new DAQ successfully acquired Compton images under those event rates, i.e., imaging resolutions of 13.8° and 19.3° at 8.7 × 104 and 106 s-1, which correspond to 1.8 and 73 μSv/hr or about 18 and 730 times the background level, respectively.

Analysis of the thermal-mechanical behavior of SFR fuel pins during fast unprotected transient overpower accidents using the GERMINAL fuel performance code

  • Vincent Dupont;Victor Blanc;Thierry Beck;Marc Lainet;Pierre Sciora
    • Nuclear Engineering and Technology
    • /
    • 제56권3호
    • /
    • pp.973-979
    • /
    • 2024
  • In the framework of the Generation IV research and development project, in which the French Commission of Alternative and Atomic Energies (CEA) is involved, a main objective for the design of Sodium-cooled Fast Reactor (SFR) is to meet the safety goals for severe accidents. Among the severe ones, the Unprotected Transient OverPower (UTOP) accidents can lead very quickly to a global melting of the core. UTOP accidents can be considered either as slow during a Control Rod Withdrawal (CRW) or as fast. The paper focuses on fast UTOP accidents, which occur in a few milliseconds, and three different scenarios are considered: rupture of the core support plate, uncontrolled passage of a gas bubble inside the core and core mechanical distortion such as a core flowering/compaction during an earthquake. Several levels and rates of reactivity insertions are also considered and the thermal-mechanical behavior of an ASTRID fuel pin from the ASTRID CFV core is simulated with the GERMINAL code. Two types of fuel pins are simulated, inner and outer core pins, and three different burn-up are considered. Moreover, the feedback from the CABRI programs on these type of transients is used in order to evaluate the failure mechanism in terms of kinetics of energy injection and fuel melting. The CABRI experiments complete the analysis made with GERMINAL calculations and have shown that three dominant mechanisms can be considered as responsible for pin failure or onset of pin degradation during ULOF/UTOP accident: molten cavity pressure loading, fuel-cladding mechanical interaction (FCMI) and fuel break-up. The study is one of the first step in fast UTOP accidents modelling with GERMINAL and it has shown that the code can already succeed in modelling these type of scenarios up to the sodium boiling point. The modeling of the radial propagation of the melting front, validated by comparison with CABRI tests, is already very efficient.

A new method to calculate a standard set of finite cloud dose correction factors for the level 3 probabilistic safety assessment of nuclear power plants

  • Gee Man Lee;Woo Sik Jung
    • Nuclear Engineering and Technology
    • /
    • 제56권4호
    • /
    • pp.1225-1233
    • /
    • 2024
  • Level 3 probabilistic safety assessment (PSA) is performed to calculate radionuclide concentrations and exposure dose resulting from nuclear power plant accidents. To calculate the external exposure dose from the released radioactive materials, the radionuclide concentrations are multiplied by two factors of dose coefficient and a finite cloud dose correction factor (FCDCF), and the obtained values are summed. This indicates that a standard set of FCDCFs is required for external exposure dose calculations. To calculate a standard set of FCDCFs, the effective distance from the release point to the receptor along the wind direction should be predetermined. The TID-24190 document published in 1968 provides equations to calculate FCDCFs and the resultant standard set of FCDCFs. However, it does not provide any explanation on the effective distance required to calculate the standard set of FCDCFs. In 2021, Sandia National Laboratories (SNLs) proposed a method to predetermine finite effective distances depending on the atmospheric stability classes A to F, which results in six standard sets of FCDCFs. Meanwhile, independently of the SNLs, the authors of this paper discovered that an infinite effective distance assumption is a very reasonable approach to calculate one standard set of FCDCFs, and they implemented it into the multi-unit radiological consequence calculator (MURCC) code, which is a post-processor of the level 3 PSA codes. This paper calculates and compares short- and long-range FCDCFs calculated using the TID-24190, SNLs method, and MURCC method, and explains the strength of the MURCC method over the SNLs method. Although six standard sets of FCDCFs are required by the SNLs method, one standard sets of FCDCFs are sufficient by the MURCC method. Additionally, the use of the MURCC method and its resultant FCDCFs for level 3 PSA was strongly recommended.