DOI QR코드

DOI QR Code

Geochemical and S isotopic studies of pollutant evolution in groundwater after acid in situ leaching in a uranium mine area in Xinjiang

  • Zhenzhong Liu (School of Resource Environment and Safety Engineering, University of South China) ;
  • Kaixuan Tan (School of Resource Environment and Safety Engineering, University of South China) ;
  • Chunguang Li (School of Resource Environment and Safety Engineering, University of South China) ;
  • Yongmei Li (School of Resource Environment and Safety Engineering, University of South China) ;
  • Chong Zhang (School of Resource Environment and Safety Engineering, University of South China) ;
  • Jing Song (School of Resource Environment and Safety Engineering, University of South China) ;
  • Longcheng Liu (R&D Center of Radioactive Waste Treatment, Disposal and Modeling, University of South China)
  • Received : 2022.09.05
  • Accepted : 2022.12.06
  • Published : 2023.04.25

Abstract

Laboratory experiments and point monitoring of reservoir sediments have proven that stable sulfate reduction (SSR) can lower the concentrations of toxic metals and sulfate in acidic groundwater for a long time. Here, we hypothesize that SSR occurred during in situ leaching after uranium mining, which can impact the fate of acid groundwater in an entire region. To test this, we applied a sulfur isotope fractionation method to analyze the mechanism for natural attenuation of contaminated groundwater produced by acid in situ leaching of uranium (Xinjiang, China). The results showed that δ34S increased over time after the cessation of uranium mining, and natural attenuation caused considerable, area-scale immobilization of sulfur corresponding to retention levels of 5.3%-48.3% while simultaneously decreasing the concentration of uranium. Isotopic evidence for SSR in the area, together with evidence for changes of pollutant concentrations, suggest that area-scale SSR is most likely also important at other acid mining sites for uranium, where retention of acid groundwater may be strengthened through natural attenuation. To recapitulate, the sulfur isotope fractionation method constitutes a relatively accurate tool for quantification of spatiotemporal trends for groundwater during migration and transformation resulting from acid in situ leaching of uranium in northern China.

Keywords

Acknowledgement

This work was supported by the National Natural Science Foundation of China (U1703123), the Research Foundation of Education Bureau of Hunan Province, China (20B494), and the Natural Science Foundation of Hunan Province, China (2019JJ50496).

References

  1. G. Mudd, Critical review of acid in situ leach uranium mining: 1. USA and Australia, Environ. Geol. 41 (2001) 390-403. https://doi.org/10.1007/s002540100406
  2. K. Tan, C. Li, J. Liu, H. Qu, L. Xia, Y. Hu, Y. Li, A novel method using a complex surfactant for in-situ leaching of low permeable sandstone uranium deposits, Hydrometallurgy 150 (2014) 99-106. https://doi.org/10.1016/j.hydromet.2014.10.001
  3. M. Seredkin, A. Zabolotsky, G. Jeffress, In situ recovery, an alternative to conventional methods of mining: exploration, resource estimation, environmental issues, project evaluation and economics, Ore Geol. Rev. 79 (2016) 500-514. https://doi.org/10.1016/j.oregeorev.2016.06.016
  4. N. Pa, J. Tang, D.Z. Hou, H. Lei, D.H. Zhou, J. Ding, Enhanced uranium uptake from acidic media achieved on a novel iron phosphate adsorben, Chem. Eng. J. 423 (2021), 130267.
  5. J. Harries, Acid mine drainage in Australia: its extent and potential future liability, Supervising Scientist Rep. 125 (1997).
  6. G. Naidu, S. Ryu, R. Thiruvenkatachari, Y. Choi, S. Jeong, S. Vigneswaran, A critical review on remediation, reuse, and resource recovery from acid mine drainage, Environ. Pollut. 247 (2019) 1110-1124. https://doi.org/10.1016/j.envpol.2019.01.085
  7. M. Kalin, A. Fyson, W.N. Wheeler, The chemistry of conventional and alternative treatment systems for the neutralization of acid mine drainage, Sci. Total Environ. 366 (2006) 395-408. https://doi.org/10.1016/j.scitotenv.2005.11.015
  8. P.W. Reimus, M.A. Dangelmayr, J.T. Clay, K.R. Chamberlain, Uranium natural attenuation downgradient of an in situ recovery mine inferred from a cross-hole field test, Environ. Sci. Technol. 53 (2019) 7483-7493. https://doi.org/10.1021/acs.est.9b01572
  9. D. Shang, B. Geissler, M. Mew, et al., Unconventional uranium in China's phosphate rock: review and outlook, Renew. Sustain. Energy Rev. 140 (2021), 110740.
  10. S. Hall, Groundwater Restoration at Uranium In-Situ Recovery Mines, South Texas Coastal Plain, US Geological Survey, 2009.
  11. Y. Dong, Y. Xie, G. Li, J. Zhang, Efficient natural attenuation of acidic contaminants in a confined aquifer, Environ. Earth. 75 (2016) 595. Sci.
  12. J. Luo, Hydraulic Control and Reactive Transport Modeling for In-Situ Bioremediation of Uranium-Contaminated Groundwater, Doctoral dissertation, Stanford University, 2006.
  13. D. Lunt, P. Boshoff, M. Boylett, Z. El-Ansary, Uranium extraction: the key process drivers, J. S. Afr. Inst. Min. Metall 107 (7) (2007) 419.
  14. M. Yin, J. Sun, H. He, J. Liu, Q. Zhong, Q. Zeng, X. Huang, J. Wang, Y. Wu, D. Chen, Uranium re-adsorption on uranium mill tailings and environmental implications, J. Hazard Mater. 416 (6) (2021), 126153.
  15. D. Cui, B. Yang, H. Guo, G. Lian, J. Sun, Adsorption and transport of uranium in porous sandstone media, Earth Sci. Front. 29 (3) (2022) 217-226 (Chinese).
  16. A. Basu, S.T. Brown, J.N. Christensen, D.J. DePaolo, P.W. Reimus, J.M. Heikoop, G. Woldegabriel, A.M. Simmons, B.M. House, M. Hartmann, K. Maher, Isotopic and geochemical tracers for U(VI) reduction and U mobility at an in situ recovery U mine, Environ. Sci. Technol. 49 (2015) 5939-5947. https://doi.org/10.1021/acs.est.5b00701
  17. S.T. Brown, A. Basu, J.N. Christensen, P. Reimus, J. Heikoop, A. Simmons, G. Woldegabriel, K. Maher, K. Weaver, J. Clay, D.J. DePaolo, Isotopic evidence for reductive immobilization of uranium across a roll-front mineral deposit, Environ. Sci. Technol. 50 (2016) 6189-6198. https://doi.org/10.1021/acs.est.6b00626
  18. S. Fischer, J. Jarsjo, G. Rosqvist, C. Morth, Catchment-scale microbial sulfate reduction (MSR) of acid mine drainage (AMD) revealed by sulfur isotopes, Environ. Pollut. 292 (B) (2022), 118478, https://doi.org/10.1016/ j.envpol.2021.118478.
  19. C. Bonnetti, L. Zhou, T. Riegler, J. Brugger, M. Fairclough, Large S isotope and trace element fractionations in pyrite of uranium roll front systems result from internally-driven biogeochemical cycle, Geochem. Cosmochim. Acta 282 (2020) 113-132. https://doi.org/10.1016/j.gca.2020.05.019
  20. H. Zhang, W. Yu, M. Luo, Z. X, H. W, Effects of microbes and organics in the environment on the reduction of U(VI) by pyrite, Chemistry 83 (2) (2020) 167-171 (In Chinese).
  21. Q. Zhou, K. Tan, Y. Liu, Column experimental study on restoration of polluted groundwater from in situ leaching uranium mining with Sulfate Reducing Bacteria, Min. Eng. Res. 24 (2) (2009) 75-78 (In Chinese).
  22. S. Weimin, S. Xiaoxu, M.H. Max, K. Max, L. Ling, L. Baoqin, D. Yiran, X. Rui, L. Fangbai, Identification of antimonate reducing bacteria and their potential metabolic traits by the combination of stable isotope probing and metagenomic-pangenomic analysis, Enviromental Science&Technology (2021) 55.
  23. T. Yamashita, P. Hayes, Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials, Appl. Surf. Sci. 254 (2008) 2441-2449. https://doi.org/10.1016/j.apsusc.2007.09.063
  24. M.D. Rudnicki, H. Elderfield, B. Spiro, Fractionation of sulfur isotopes during bacterial sulfate reduction in deep ocean sediments at elevated temperatures, Geochem. Cosmochim. Acta 65 (5) (2001) 777-789. https://doi.org/10.1016/S0016-7037(00)00579-2
  25. R.R. Seal, Sulfur isotope geochemistry of sulfide minerals, Rev. Mineral. Geochem. 61 (1) (2006) 633-677. https://doi.org/10.2138/rmg.2006.61.12
  26. J. Noah, R. Paul, H. Rose, B. Hakim, C. James, C. Kevin, Reduction and potential remediation of U(VI) by dithionite at an in-situ recovery mine: insights gained by δ238U, Appl. Geochem. 115 (2020), 104560.
  27. Y. Cheng, B. Arora, S.S. S, engor, et al., Microbially mediated kinetic sulfur isotope fractionation: reactive transport modeling benchmark, Comput. Geosci. 25 (2021) 1379-1391, https://doi.org/10.1007/s10596-020-09988-9.