Acknowledgement
This work was supported by the National Natural Science Foundation of China (U1703123), the Research Foundation of Education Bureau of Hunan Province, China (20B494), and the Natural Science Foundation of Hunan Province, China (2019JJ50496).
References
- G. Mudd, Critical review of acid in situ leach uranium mining: 1. USA and Australia, Environ. Geol. 41 (2001) 390-403. https://doi.org/10.1007/s002540100406
- K. Tan, C. Li, J. Liu, H. Qu, L. Xia, Y. Hu, Y. Li, A novel method using a complex surfactant for in-situ leaching of low permeable sandstone uranium deposits, Hydrometallurgy 150 (2014) 99-106. https://doi.org/10.1016/j.hydromet.2014.10.001
- M. Seredkin, A. Zabolotsky, G. Jeffress, In situ recovery, an alternative to conventional methods of mining: exploration, resource estimation, environmental issues, project evaluation and economics, Ore Geol. Rev. 79 (2016) 500-514. https://doi.org/10.1016/j.oregeorev.2016.06.016
- N. Pa, J. Tang, D.Z. Hou, H. Lei, D.H. Zhou, J. Ding, Enhanced uranium uptake from acidic media achieved on a novel iron phosphate adsorben, Chem. Eng. J. 423 (2021), 130267.
- J. Harries, Acid mine drainage in Australia: its extent and potential future liability, Supervising Scientist Rep. 125 (1997).
- G. Naidu, S. Ryu, R. Thiruvenkatachari, Y. Choi, S. Jeong, S. Vigneswaran, A critical review on remediation, reuse, and resource recovery from acid mine drainage, Environ. Pollut. 247 (2019) 1110-1124. https://doi.org/10.1016/j.envpol.2019.01.085
- M. Kalin, A. Fyson, W.N. Wheeler, The chemistry of conventional and alternative treatment systems for the neutralization of acid mine drainage, Sci. Total Environ. 366 (2006) 395-408. https://doi.org/10.1016/j.scitotenv.2005.11.015
- P.W. Reimus, M.A. Dangelmayr, J.T. Clay, K.R. Chamberlain, Uranium natural attenuation downgradient of an in situ recovery mine inferred from a cross-hole field test, Environ. Sci. Technol. 53 (2019) 7483-7493. https://doi.org/10.1021/acs.est.9b01572
- D. Shang, B. Geissler, M. Mew, et al., Unconventional uranium in China's phosphate rock: review and outlook, Renew. Sustain. Energy Rev. 140 (2021), 110740.
- S. Hall, Groundwater Restoration at Uranium In-Situ Recovery Mines, South Texas Coastal Plain, US Geological Survey, 2009.
- Y. Dong, Y. Xie, G. Li, J. Zhang, Efficient natural attenuation of acidic contaminants in a confined aquifer, Environ. Earth. 75 (2016) 595. Sci.
- J. Luo, Hydraulic Control and Reactive Transport Modeling for In-Situ Bioremediation of Uranium-Contaminated Groundwater, Doctoral dissertation, Stanford University, 2006.
- D. Lunt, P. Boshoff, M. Boylett, Z. El-Ansary, Uranium extraction: the key process drivers, J. S. Afr. Inst. Min. Metall 107 (7) (2007) 419.
- M. Yin, J. Sun, H. He, J. Liu, Q. Zhong, Q. Zeng, X. Huang, J. Wang, Y. Wu, D. Chen, Uranium re-adsorption on uranium mill tailings and environmental implications, J. Hazard Mater. 416 (6) (2021), 126153.
- D. Cui, B. Yang, H. Guo, G. Lian, J. Sun, Adsorption and transport of uranium in porous sandstone media, Earth Sci. Front. 29 (3) (2022) 217-226 (Chinese).
- A. Basu, S.T. Brown, J.N. Christensen, D.J. DePaolo, P.W. Reimus, J.M. Heikoop, G. Woldegabriel, A.M. Simmons, B.M. House, M. Hartmann, K. Maher, Isotopic and geochemical tracers for U(VI) reduction and U mobility at an in situ recovery U mine, Environ. Sci. Technol. 49 (2015) 5939-5947. https://doi.org/10.1021/acs.est.5b00701
- S.T. Brown, A. Basu, J.N. Christensen, P. Reimus, J. Heikoop, A. Simmons, G. Woldegabriel, K. Maher, K. Weaver, J. Clay, D.J. DePaolo, Isotopic evidence for reductive immobilization of uranium across a roll-front mineral deposit, Environ. Sci. Technol. 50 (2016) 6189-6198. https://doi.org/10.1021/acs.est.6b00626
- S. Fischer, J. Jarsjo, G. Rosqvist, C. Morth, Catchment-scale microbial sulfate reduction (MSR) of acid mine drainage (AMD) revealed by sulfur isotopes, Environ. Pollut. 292 (B) (2022), 118478, https://doi.org/10.1016/ j.envpol.2021.118478.
- C. Bonnetti, L. Zhou, T. Riegler, J. Brugger, M. Fairclough, Large S isotope and trace element fractionations in pyrite of uranium roll front systems result from internally-driven biogeochemical cycle, Geochem. Cosmochim. Acta 282 (2020) 113-132. https://doi.org/10.1016/j.gca.2020.05.019
- H. Zhang, W. Yu, M. Luo, Z. X, H. W, Effects of microbes and organics in the environment on the reduction of U(VI) by pyrite, Chemistry 83 (2) (2020) 167-171 (In Chinese).
- Q. Zhou, K. Tan, Y. Liu, Column experimental study on restoration of polluted groundwater from in situ leaching uranium mining with Sulfate Reducing Bacteria, Min. Eng. Res. 24 (2) (2009) 75-78 (In Chinese).
- S. Weimin, S. Xiaoxu, M.H. Max, K. Max, L. Ling, L. Baoqin, D. Yiran, X. Rui, L. Fangbai, Identification of antimonate reducing bacteria and their potential metabolic traits by the combination of stable isotope probing and metagenomic-pangenomic analysis, Enviromental Science&Technology (2021) 55.
- T. Yamashita, P. Hayes, Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials, Appl. Surf. Sci. 254 (2008) 2441-2449. https://doi.org/10.1016/j.apsusc.2007.09.063
- M.D. Rudnicki, H. Elderfield, B. Spiro, Fractionation of sulfur isotopes during bacterial sulfate reduction in deep ocean sediments at elevated temperatures, Geochem. Cosmochim. Acta 65 (5) (2001) 777-789. https://doi.org/10.1016/S0016-7037(00)00579-2
- R.R. Seal, Sulfur isotope geochemistry of sulfide minerals, Rev. Mineral. Geochem. 61 (1) (2006) 633-677. https://doi.org/10.2138/rmg.2006.61.12
- J. Noah, R. Paul, H. Rose, B. Hakim, C. James, C. Kevin, Reduction and potential remediation of U(VI) by dithionite at an in-situ recovery mine: insights gained by δ238U, Appl. Geochem. 115 (2020), 104560.
- Y. Cheng, B. Arora, S.S. S, engor, et al., Microbially mediated kinetic sulfur isotope fractionation: reactive transport modeling benchmark, Comput. Geosci. 25 (2021) 1379-1391, https://doi.org/10.1007/s10596-020-09988-9.