Cloud seeding experiment has been proposed as a way to alleviate severe air pollution problem because, if successful, artificially produced precipitation through cloud seeding could scavenge out some portion of air pollutants. As a first step to verify the practicality of such experiment, seedability of the clouds observed in Seoul is assessed by examining statistical characteristics of some relevant meteorological variables. Analyses of 9 years of Korea Meteorological Agency Seoul station data indicate that as PM10 mass concentration increases, cloud amount, liquid water path, and ice water path decrease, but the difference between temperature and dew point temperature tends to increase. Such finding suggests that cloud seeding becomes less feasible as air pollution becomes more severe in the Seoul metropolitan area, at least in a statistical sense. For some individual severe air pollution events, however, seedable clouds may exist and indeed cloud seeding experiments can be successful. Therefore, detailed investigation on cloud seedability for individual severe air pollution events are highly required to make a concrete assessment of cloud seeding as a way to alleviate severe air pollution problem.
본 연구에서는 UAV기반 항공사진측량에 의해 정사사진 및 DEM을 생성하고 이를 침수흔적도 제작을 위한 정밀조사에 적용하고자 하였다. 2012년 9월 제6호 태풍 산바(Sanba)의 영향으로 제방붕괴 및 내수침수 피해가 발생한 구미시 고아읍 농경지를 연구대상지역으로 선정하였다. UAV사진측량 성과의 최적 정확도를 얻기 위해 연구지역에 19점의 GCP 최적 배치상태에서 Pix4Dmapper 소프트웨어를 이용한 영상처리를 통하여 점군 데이터, DEM 및 정사영상을 생성하였다. loudCompare의 CSF Filtering를 적용하여 지면요소와 비지면요소로 point cloud를 분리한 후 GRASS GIS 소프트웨어에서 비지면요소만을 사용하여 최종적으로 보정된 DEM을 생성하였다. 최종 생성된 DEM으로부터 추출한 침수위 및 침수심 데이터와 한국국토정보공사(LX)의 공공데이터 포털사이트를 통하여 제공된 2012년 당시 같은 지역에 대한 기존 자료의 침수위 및 침수심 데이터를 비교하여 제시하였다.
Over the past several years, many studies have been carried out in the field of 3D data inspection systems. Several attempts have been made to improve the quality of manufactured parts. The introduction of laser sensors for inspection has made it possible to acquire data at a remarkably high speed. In this paper, a robust inspection technique for detecting defects in 3D pressed parts using laser-scanned data is proposed. Point cloud data are segmented for the extraction of features. These segmented features are used for shape matching during the localization process. An iterative closest point (ICP) algorithm is used for the localization of the scanned model and CAD model. To achieve a higher accuracy rate, the ICP algorithm is modified and then used for matching. To enhance the speed of the matching process, aKd-tree algorithm is used. Then, the deviation of the scanned points from the CAD model is computed.
건설, 의료, 컴퓨터 그래픽스, 도시공간 관리 등 다양한 분야에서 3차원 공간모델이 이용되고 있다. 특히 측량 및 공간정보 분야에서는 최근 스마트시티, 정밀도로지도 구축 등과 같은 고품질의 3차원 공간정보에 대한 수요가 폭발적으로 증가하면서, 이를 보다 손쉽고, 간편하게 취득하기 위하여 MMS, UAV와 같은 관측기술이 활발히 활용되고 있다. 하지만 두 자료를 통합하여 3차원 모델링을 수행하기 위해서는, 두 관측기술 적용 시 발생하는 원시자료 취득센서, 점군 자료생성 방식 및 관측정확도 간의 차이를 효율적으로 보정할 수 있는 최적의 정합방법이 필요하다. 본 연구에서는 일반적인 3차원 모델의 자동정합에 사용되는 ICP(Iterative Closet Point) 기법을 통한 MMS와 UAV 점군 데이터 간 자동정합 성능을 판단하기 위하여, 여의도 지역을 연구대상지역으로 설정하고 UAV 영상을 취득 후 점군 자료로 변환하였다. 그 후 대상지역을 총 4개의 구역으로 구분하여 MMS 관측을 수행하였으며, UAV 점군 자료를 기반으로 각 구역에서 관측된 MMS 점군 자료와 수동정합하고 이를 ICP 기반으로 자동정합한 결과와 비교하였다. 보다 엄밀하게 ICP 기반의 자동정합 성능을 판단하기 위하여 각 구역별로 데이터 중첩률, 노이즈 레벨 등의 변수를 다르게 하여 비교를 수행하였다. 결론적으로 ICP 기반의 자동정합 시 데이터 중첩률이 높고, 노이즈 레벨이 낮을수록 더 높은 정확도로 정합될 수 있다는 것을 알 수 있었다.
자율주행 환경은 실시간으로 상황이 급변하기 때문에 동적 객체인식 알고리즘이 반드시 필요하다. 또한, 자율주행자동차에 내장된 센서와 제어모듈이 증가하면서 중앙제어장치의 부하가 급격히 증가하고 있다. 중앙제어장치의 부하를 줄이기 위해서 단일 센서에서 출력되는 데이터의 최적화가 필요하다. 본 연구는 라이다에 탑재된 임베디드 프로세서를 기반으로 한 동적 객체인식 알고리즘을 제안한다. 라이다에서 출력되는 포인트클라우드 기반 객체인식을 위한 오픈소스들이 존재하지만, 대부분 고성능 프로세서를 요구한다. 라이다에 탑재된 임베디드 프로세서는 리소스 제약 때문에 기능 구현을 위한 최적화 된 아케텍처가 반드시 필요하다. 본 연구에서는 자율주행자동차를 위한 라이다 임베디드 프로세서 기반 동적 객체인식 아키텍처를 설계하고, 포인트클라우드 크기와 객체인식 처리 지연시간의 상관관계를 분석하였다. 제안하는 객체인식 아키텍처는 포인트클라우드 크기가 증가함에 따라 객체인식 처리 지연시간이 증가하였고, 특정한 지점에서 프로세서의 과부하가 발생하여 포인트를 처리하지 못하는 현상이 발생하였다.
최근의 LiDAR(Light Detection And Ranging) 센서는 실시간으로 주변에 있는 물체를 스캔하는 데 사용된다. LiDAR 센서를 이용하여 주변 환경을 스캔할 경우 감지되었던 사물들에 대한 변화를 감지하고 실시간으로 움직이는 물체를 인식할 수 있다. 센서들의 제작 비용이 낮아지면서 LiDAR는 중요시설의 경계, 스마트시티, 자율주행차 등 다양한 산업 분야에서 다양하게 활용되고 있다. 이러한 LiDAR 데이터는 실시간에 사물을 스캔하는 만큼 입력 데이터의 크기가 크다. 따라서 이러한 LiDAR를 활용하는 시스템에서는 이러한 대용량 데이터의 실시간 처리가 병목이 될 수 있어서 이러한 대용량 처리에 대한 대안이 필요하다. 본 논문에서는 엣지 컴퓨팅 서버를 이용하여 방대한 포인트 클라우드를 압축하여 빠르게 처리하는 엣지 컴퓨팅 기법을 제안한다. LiDAR 센서의 레이저의 반사 범위가 제한되어 있으므로 실시간으로 넓은 영역을 스캔하기 위해서는 여러 대의 라이다를 사용해야 한다. 따라서 실시간으로 물체를 감지하거나 인식하기 위해서는 여러 개의 LiDAR 센서에 대한 데이터를 한 번에 처리해야 한다. 에지 컴퓨터는 데이터 가속을 수행하기 위해 포인트 클라우드를 효율적으로 압축하고 모든 데이터를 메인 클라우드에서 실시간에 압축해제하여 사용할 수 있도록 설계되었다. 이를 통해 사용자는 시스템을 중앙에서 병목 없이 실시간에 LiDAR 센서들을 제어할 수 있다. 실험에 사용된 시스템은 이러한 엣지 컴퓨팅 서비스를 적용함으로써 기존 클라우드 기반 방식에서 문제였던 데이터 병목 현상을 효과적으로 해결하였다.
Infra-Red Dark Clouds (IRDCs) seen silhouette against the bright Galactic background in mid-IR are a class of interstellar clouds that are dense and cold with very high column densities. While IRDCs are believed to be the precursors to massive stars and star clusters, individual IRDCs show diverse star forming activities within them. We report a remarkable example of such cloud, the IRDC at ${\Gamma}53.2^{\circ}$, and star formation activity in this cloud. The IRDC was previously identified in part as three separate, arcmin-size clouds in the catalogue of MSX IRDC candidates, but we found that the IRDC is associated with a long, filamentary CO cloud at 2 kpc from the Galactic Ring Survey data of $^{13}CO$ J = 1-0 emission, and that its total extent reaches ~ 30pc. The Spitzer MIPSGAL 24mm data show a number of reddened mid-IR sources distributed along the IRDC which are probably young stellar objects (YSOs), and the UWISH2 $H_2$ data (2.122mm) reveal ubiquitous out flows around them. These observations indicate that the IRDC is a site of active star formation with YSOs in various evolutionary stages. In order to investigate the nature of mid-IR sources, we have performed photometry of MIPSGAL data, and we present a catalogue of YSOs combining other available point source catalogues from optical to IR. We discuss the evolutionary stages and characteristics of YSOs from their IR colors and spectral energy distributions.
노후 건축물의 수가 증가함에 따라, 건물의 안전진단, 유지 보수에 대한 중요성이 증가하고 있다. 기존 외관 조사는 점검자의 주관적인 판단이 수반되어 평가 결과가 다르고 객관성과 신뢰성이 떨어진다. 따라서 본 연구는 기존 연구를 통해 기실시된 외관 조사 및 상태 평가 프로세스의 한계를 제시하였으며, UAV, Laser Scanner를 통해 3D Point Cloud 데이터를 수집하였다. 또한, Reverse Engineering 기술을 이용하여 3D 모델을 생성한 후 객관적인 상태평가 데이터를 취득하였다. 이후 기존의 정밀검사 데이터와 정밀 안전진단 데이터를 활용하여 DNN 구조를 생성하고, 고정밀도 측정 장치를 이용하여 얻은 상태평가 데이터를 적용하여 객관적인 건물안전등급을 산출하였다. 자동화된 프로세스는 20개의 노후된 건축물에 적용되며 동일 면적 건축물 기준 수작업으로 실시되는 안전진단의 시간에 비해 약 50% 감소하였다. 이후 본 연구에서는 안전등급 결과값과 기존값을 비교하여 안전등급 산출과정의 정확성을 검증하고 약 90%의 높은 정확도를 가진 DNN을 구축하였다. 이는 향후 노후 건물의 안전등급 산정의 신뢰성이 향상되고 비용과 시간을 절약해 경제성이 향상될 것으로 기대된다.
Reverse engineering technology refers to the process that creates a CAD model of an existing part using measuring devices. Recently, non-contact scanning devices have become more accurate and the speed of data acquisition has increased drastically. However, they generate thousands of points per second and various types of point data. Therefore, it becomes a major issue to handle the huge amount and various types of point data. To generate a CAD model from scanned point data efficiently, these point data should be well arranged through point data handling processes such as data reduction and segmentation. This paper proposes a new point data handling method using 3D grids. The geometric information of a part is extracted from point cloud data by estimating normal values of the points. The non-uniform 3D grids for data reduction and segmentation are generated based on the geometric information. Through these data reduction and segmentation processes, it is possible to create CAD models autmatically and efficiently. The proposed method is applied to two quardric medels and the results are discussed.
2D 이미지로부터 카메라의 위치 정보를 추정할 수 있는 Structure-from-Motion (SfM) 기술과 dense depth map 을 추정하는 Multi-view Stereo (MVS) 기술을 이용하여 2D 이미지에서 point cloud 와 같은 3D data 를 얻을 수 있다. 3D data 는 VR, AR, 메타버스와 같은 컨텐츠에 사용되기 위한 핵심 요소이다. Point cloud 는 보통 VR, AR, 메타버스와 같은 많은 분야에 이용되기 위해 mesh 형태로 변환된 후 texture 를 입히는 Texturing 과정이 필요하다. 기존의 Texturing 방법에서는 mesh의 face에 사용될 image의 outlier를 제거하기 위해 color 정보만을 이용했다. Color 정보를 이용하는 방법은 mesh 의 face 에 대응되는 image 의 수가 충분히 많고 움직이는 물체에 대한 outlier 에는 효과적이지만 image 의 수가 부족한 경우와 부정확한 카메라 파라미터에 대한 outlier 에는 부족한 성능을 보인다. 본 논문에서는 Texturing 과정의 view selection 에서 depth 정보를 추가로 이용하여 기존 방법의 단점을 보완할 수 있는 방법을 제안한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.