• Title/Summary/Keyword: Point A dose

Search Result 572, Processing Time 0.026 seconds

A Comparison of the Independent Verification Methods for the Results of Leksell GammaPlan for Gamma Knife Predecessor with the Hemispherical Collimators (반구형 시준기를 가진 감마나이프에 대한 렉셀감마플랜 결과물의 독립적인 검증방법들의 비교)

  • Hur, Beong Ik
    • Journal of the Korean Society of Radiology
    • /
    • v.10 no.7
    • /
    • pp.521-529
    • /
    • 2016
  • Since Gamma Knife(R) radiosurgery(GKRS) is based on a single-fraction high dose treatment strategy, independent verification for the results of Leksell GammaPlan(R) (LGP) is an important procedure in assuring patient safety and minimizing the risk of treatment errors. Several verification methods have been developed and reported previously. Thus these methods were tested statistically and tried on Leksell Gamma Knife(LGK) target treatments through the embodiment of the previously proposed algorithms(PPA). The purpose of this study was to apply and evaluate the accuracy of verification methods for LGK target treatments using PPA. In the study 10 patients with intracranial lesion treated by GKRS were included. We compared the data from PPA and LGP in terms of maximum dose, arbitrary point dose, and treatment time at the isocenter locations. All data were analyzed by Paired t-test, which is statistical method used to compare two different measurement techniques. No statistical significance in maximal dose at 10 cases was observed between PPA and LGP. Differences in average maximal dose ranged from -0.53 Gy to 3.71 Gy. The arbitrary point dose calculated by PPA and LGP was not statistically significant too. But we found out the statistical difference with p=0.021 between TMR and LGP for treatment time at the isocenter locations. PPA can be incorporated as part of a routine quality assurance(QA) procedure to minimize the chance of a wrong overdose. Statistical analyses demonstrated that PPA was in excellent agreement with LGP when considering the maximal dose and the arbitrary point dose for the best plan of GKRS. Due to the easy applicability we hope PPA can be widely used.

The Study on the Head and Neck Phantom for Quality Assurance of Intensity Modulated Radiotherapy (세기변조방사선치료의 정도관리를 위한 두경부 팬톰 제작에 관한 연구)

  • Shin Dongho;Park Sung-Yong;Kim Joo Young;Lee Se Byeong;Cho Jung Keun;Kim Dae Yong;Cho Kwan Ho
    • Progress in Medical Physics
    • /
    • v.16 no.1
    • /
    • pp.39-46
    • /
    • 2005
  • For the QA of IMRT treatment of head and neck cancer by using M3 (BrainLAB Inc. Germany), it is not easy to measure delivery dose exactly because the dose attenuation appears by the couch according to the position of table and gantry. In order to solve this problem, we fabricated head and neck phantom which would be implemented on the couch mount of Brain Lab Inc. We investigated dose attenuation by the couch and found the difference of dose distribution by the couch, in the applying this phantom to the clinic. After measurement, we found that point dose attenuation was 35% at maximum and dose difference was 5.4% for a point dose measurement of actual patient quality assurance plan.

  • PDF

An innovative idea for developing a new gamma-ray dosimetry system based on optical colorimetry techniques

  • Ioan, Mihail-Razvan
    • Nuclear Engineering and Technology
    • /
    • v.50 no.3
    • /
    • pp.519-525
    • /
    • 2018
  • Obtaining knowledge of the absorbed dose up-taken by a certain material when it is exposed to a specific ionizing radiation field is a very important task. Even though there are a plenitude of methods for determining the absorbed dose, each one has its own strong points and also drawbacks. In this article, an innovative idea for the development of a new gamma-ray dosimetry system is proposed. The method described in this article is based on optical colorimetry techniques. A color standard is fixed to the back of a BK-7 glass plate and then placed in a point in space where the absorbed dose needs to be determined. Gamma-ray-induced defects (color centers) in the glass plate start occurring, leading to a degree of saturation of the standard color, which is proportional, on a certain interval, to the absorbed dose. After the exposure, a high-quality digital image of the sample is taken, which is then processed (MATLAB), and its equivalent $I_{RGB}$ intensity value is determined. After a prior corroboration between various well-known absorbed dose values and their corresponding $I_{RGB}$ values, a calibration function is obtained. By using this calibration function, an "unknown" up-taken dose value can be determined.

Measurement of Radiation Using Tissue Equivalent Phantom in ICR Treatment (자궁강내 근접방사선조사시 인체조직등가 팬톰을 이용한 방사선량 측정)

  • Jang, Hong-Seok;Suh, Tae-Suk;Yoon, Sei-Chul;Ryu, Mi-Ryeong;Bahk, Yong-Whee;Shinn, Kyung-Sub
    • Journal of Radiation Protection and Research
    • /
    • v.20 no.1
    • /
    • pp.45-52
    • /
    • 1995
  • This study is to compare A point doses in human pelvic phantom by film dosimetry, computer planning and manual calculation by using of along-away table. We developed tissue equivalent human pelvic phantom composed of four pieces of cylindrical acryl tubes with water, to simulate intracavitary radiation (ICR) in patients with cervix cancer. When the phantom assembled from 4 pieces, it has a small space for inserting Fletcher-Suit-Delclos applicator like a human vagina. Fletcher-Suit-Delclos applicator inserted into the space was packed tightly with furacin gauzes, and three $^{137}Cs$ sources with radioactivity of $15.7mg\;Ra-eq$ were inserted into the tandem. For the film dosimetry, two pieces of X-OMAT V film (Kodak Co.) of which planes include point A, were arranged orthogonally in the slits between phantoms. A point dose and iso-dose curves were measured by means of optical densitometer. A point doses by film dosimetry, RTP system and manual calculation by using of along-away table were compared, and iso-dose curves by film dosimetry and computer planning were also compared. The dose of A point was 51.2cGy/hr by film dosimetry, 46.7cGy/hr by RTP system and 47.9 cGy/hr by along-away table. A point dose by computer planning was similar to the dose by calculation using of along-away table with acceptable accuracy $({\pm}3%)$, however, the dose by film dosimetry was different from two others with about 10% error. Since most clinical beams contains a scatter component of low energy photons, the correlation between optical density and dose becomes tenuous. In addition, film suffers from several potential errors such as changes in processing conditions, interfilm emulsion differences, and artifacts caused by air pockets adjacent to the film. For these reasons, absolute dosimetry with film is impractical, however, it is very useful for checking qualitative patterns of a radiation distribution. In future, solid state dosimeter such as TLD must be used for the dosimetry of ionizing radiation. When considerable care is used, precision of approximately 3% may be obtained using TLD.

  • PDF

Effects of Exposure Dose Reduction by Optimization of Automatic Exposure Control Factors in Digital Radiographic Examination of Paranasal Sinus (부비동 디지털 엑스선검사에서 자동노출제어 조절인자의 최적화를 통한 조사선량 감소 효과)

  • Jeong, Min-Gyu;Seoung, Youl-Hun
    • Journal of radiological science and technology
    • /
    • v.44 no.3
    • /
    • pp.173-181
    • /
    • 2021
  • The purpose of this study was to reduce dose while maintaining image quality during digital radiographic examination of paranasal sinus by using the automatic exposure control (AEC) system. The tube voltage was set as six stages that increased by about 10 kVp to 70 kVp, 81 kVp, 90 kVp, 102 kVp, 109 kVp and 117 kVp. And then the AEC system conditions were consisted of 9 setting environments, that change mode of the sensitivity (S200, S400, S800) and the density (+2.5, 0, -2.5). We measured automatically exposed tube current (mAs) under 54 conditions with combined these, and assessed SNR and PSNR through the acquired images. In addition, four radiologists performed a qualitative assessment of the acquired images for each combination on a five-point scale of the Likert. As a result, the lowest dose and the highest values of SNR and PSNR in images with a qualitative assessment more than 4 point were the AEC control factors of 90 kVp, S800, D2.5. We applied this condition to the clinical trial, it showed an effect of 83.1% reduction in exposure radiation dose (mR). Therefore, AEC system could be used as dose reduction technology if it understood and used related regulatory factors and physical characteristics.

Evaluation of the usefulness of Bolus, which combines Step Bolus and 3D Bolus (Step Bolus와 3D Bolus를 combine 한 Bolus의 유용성 평가)

  • Lee, Chang-Suk;Chae, Moon-Ki;Park, Byung-Suk;Kim, Sung-Jin;Joo, Kyoo-Sang;Park, Chul-Yong
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.33
    • /
    • pp.79-88
    • /
    • 2021
  • Objectives: Bolus, which combines 3D-bolus and Step-bolus, was produced and its usefulness is evaluated. Materials and Methods: A Bolus was manufactured with a thickness of 10mm and 5mm using a 3D printer (3D printer, USA), and a Step Bolus of 5mm was bonded to a 5mm thick bolus. In order to understand the characteristics of Step bolus and 3D bolus, the differences in relative electron density, HU value, and mass density of the two bolus were investigated. These two Bolus were applied to anthropomorpic phantom to confirm its effectiveness. After all contouring of the phantom, a treatment plan was established using the computed treatment planning system (Eclipse 16.1, Varian medical system, USA). Treatment plan was performed using electron beam 6MeV, nine dose measurement points were designated on the phantom chest, air-gap was measured at that point, and dose evaluation was performed at the same point for each bolus applied using a glass dosimeter (PLD). Results: Bolus, which combines 3D-bolus 5mm and Step-bolus 5mm, was manufactured and evaluated compared with 3D-bolus 1cm. The relative electron density of 3D Bolus was 1.0559 g/cm2 and the step Bolus was 1.0590 g/cm2, which was different by 0.01%, so the relative electron density was almost the same. In the lightweight measurement of air-gap, the combined bolus was reduced to 54.32% for all designated points compared to 3D-bolus. In the dose measurement using a glass dose meter (PLD), the consistency was high in phantom using combined bolus at most points except the slope point. Conclusion: Combined bolus made by combining 3D-bolus and Step-bolus has all the advantages of 3D-bolus and Step-bolus. In addition, by dose inaccuracy due to Air-gap, more improved dose distribution can be shown, and effective radiation therapy can be performed.

Control of heparinization by activated clotting time during extracorporeal circulation (개심술시 Activated Clotting Time 을 이용한 Heparin 투여 조절에 관한 임상적 고찰)

  • 서충헌
    • Journal of Chest Surgery
    • /
    • v.16 no.3
    • /
    • pp.281-288
    • /
    • 1983
  • Heparinization is an essential step in extracorporeal circulation for open heart surgery. But wide individual variation to heparin effect sometimes makes it difficult to anticoagulate safely or neutralize appropriately. Because the conventional set protocol of heparinization did not consider this individual variation, a new method of control of heparinization was proposed by Dr. Brian Bull in 1974. We compared the group in which a conventional set protocol was used [Control group] with the other in which a new protocol modified from that of Bull was used [ACT group], on the aspects of the dosages of heparin and protamine administered and postoperative bleeding. Our conventional protocol [Control group] consisted of: 1. Initial heparin was given at dose of 350U/Kg into the right atrium prior to bypass. 2. Additional heparin was given every hour during E.C.C., as much as a half of the Initial dose. 3. 600U of heparin was mixed into every 100ml. of priming solution. 4. The protamine dose was calculated by totalling the units of heparin given to the patient and giving 1 .8mg. of protamine per 100 units of heparin. ACT protocol [ACT group] consisted of: 1. Initial heparinization was same as that of conventional protocol. 2. ACT`s were checked before [A point] and 10 minutes after initial heparinization [B point]. With these 2 points, a dose response curve was drawn. 3. Heparin for the priming solution was same as in control group. 4. Every 30 minutes during E.C.C., ACT`s were checked with Hemochron [International Technidyne Corp.]. ACT between 450 and 600 seconds was regarded as safety zone. If ACT checked at a time was below 450 seconds, heparin dose was calculated on the dose-response curve to lengthen ACT to 480 seconds and was given into the oxygenator. 5. About 10 minutes before the term of E.C.C., ACT was checked to estimate the blood heparin level at the time. Then, protamine dose was calculated at dose of 1.Stag per 100 units of heparin. The calculated dose of protamine was mixed into 50 to lO0ml of 5% Dextrose Water and dripped intravenously during the period of 15 minutes. Compared these two groups mentioned above, results were obtained as follows: 1. Mean value of normal ACT checked with Hemochron on 30 preoperative patients was 124 seconds [range 95-145 sec.]. 2. Doses of heparin and protamine given to the patient were decreased in ACT group as much as 32.2% and 62.2% respectively. 3. Postoperative bleeding and transfusion were also decreased in ACT group in 60.5% and 67.1% respectively. 4. Our modified dose-response curve did not cause any problems in the control of heparinization. 5. Initial heparinization [Heparin 350U/Kg] was sufficient for the most patients until 60 minutes under extracorporeal circulation. 6. We used 1.5mg of protamine to neutralize 100 units of heparin. But smaller dose of protamine may be sufficient for appropriate neutralization.

  • PDF

The Effect of Photoneutron Dose in High Energy Radiotherapy (10 MV 이상 고에너지 치료 시 발생되는 광중성자의 영향)

  • Park, Byoung Suk;Ahn, Jong Ho;Kwon, Dong Yeol;Seo, Jeong Min;Song, Ki Weon
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.25 no.1
    • /
    • pp.9-14
    • /
    • 2013
  • Purpose: High-energy radiotherapy with 10 MV or higher develops photoneutron through photonuclear reaction. Photoneutron has higher radiation weighting factor than X-ray, thus low dose can greatly affect the human body. An accurate dosimetric calculation and consultation are needed. This study compared and analyzed the dose change of photoneutron in terms of space according to the size of photon beam energy and treatment methods. Materials and Methods: To measure the dose change of photoneutron by the size of photon beam energy, patients with the same therapy area were recruited and conventional plans with 10 MV and 15 MV were each made. To measure the difference between the two treatment methods, 10 MV conventional plan and 10 MV IMRT plan was made. A detector was placed at the point which was 100 cm away from the photon beam isocenter, which was placed in the center of $^3He$ proportional counter, and the photoneutron dose was measured. $^3He$ proportional counter was placed 50 cm longitudinally superior to and inferior to the couch with the central point as the standard to measure the dose change by position changes. A commercial program was used for dose change analysis. Results: The average integral dose by energy size was $220.27{\mu}Sv$ and $526.61{\mu}Sv$ in 10 MV and 15 MV conventional RT, respectively. The average dose increased 2.39 times in 15 MV conventional RT. The average photoneutron integral dose in conventional RT and IMRT with the same energy was $220.27{\mu}Sv$ and $308.27{\mu}Sv$ each; the dose in IMRT increased 1.40 times. The average photoneutron integral dose by measurement location resulted significantly higher in point 2 than 3 in conventional RT, 7.1% higher in 10 MV, and 3.0% higher in 15 MV. Conclusion: When high energy radiotherapy, it should consider energy selection, treatment method and patient position to reduce unnecessary dose by photoneutron. Also, the dose data of photoneutron needs to be systematized to find methods to apply computerization programs. This is considered to decrease secondary cancer probabilities and side effects due to radiation therapy and to minimize unnecessary dose for the patients.

  • PDF

Radiation Dose and Image Quality of Low-dose Protocol in Chest CT: Comparison of Standard-dose Protocol (흉부 CT촬영에서 저선량 프로토콜의 선량과 화질: 표준선량 프로토콜과 비교)

  • Lee, Won-Jeong;Ahn, Bong-Seon;Park, Young-Sun
    • Journal of Radiation Protection and Research
    • /
    • v.37 no.2
    • /
    • pp.84-89
    • /
    • 2012
  • The purpose of this study was to compare radiation dose and image quality between low-dose (LDP) and standard-dose protocol (SDP). LDP (120 kVp, 30 mAs, 2-mm thickness) and SDP (120 kVp, 180 mAs, 1.2-mm thickness) images obtained from 61 subjects were retrospectively evaluated at level of carina bifurcation, using multi-detector CT (Brilliance 16, Philips Medical Systems). Signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were calculated at ascending aorta and infraspinatus muscle, from CT number and back-ground noise. Radiation dose from two protocols measured at 5-point using acrylic-phantom, and CT number and noise measured at 4-point using water-phantom. All statistical analysis were performed using SPSS 19.0 program. LDP images showed significantly more noise and a significantly lower SNR and CNR than did SDP images at ascending aorta and infraspinatus muscle. Noise, SNR and CNR were significantly correlated with body mass index (p<0.001). Radiation dose, SNR and CNR from phantom were significant differences between two protocols. LDP showed a significant reduction of radiation dose with a significant change in SNR and CNR compared with SDP. Therefore, exposure dose on LDP in clinical applications needs resetting highly more considering image quality.

Spatial Dose Distribution for Diagnostic X-ray Examination within X-ray Room using the MCNPX Program (MCNPX 프로그램을 통한 일반 X선 검사 시 검사실 내 공간선량분포)

  • Lee, Dong-yeon;Lee, Jin-soo
    • The Journal of the Korea Contents Association
    • /
    • v.15 no.11
    • /
    • pp.298-306
    • /
    • 2015
  • This study is the material of the additional filter(Cu, Ni, CaWO4, Gd+Ba) being used when the diagnosis X-ray was varied to evaluate the spatial dose distribution accordingly. And it suggest to find a suitable material. Experiments using MCNPX program based on the Monte Carlo simulation method was carried out by selecting the chest and abdomen taken. As a result, each material per dose, the average scatter dose is approximately 62%, 100 cm radius of the point of the simulated body surface exposure dose and 50 cm radius centered on the point average about 47%. It is determined that an Al material is currently available in accordance with the result to be replaced by Cu, Ni material is sufficient. With just the thickness due to the difference in the atomic number and density adjusted to be about one-tenth of the Al it will be suitable.