DOI QR코드

DOI QR Code

Radiation Dose and Image Quality of Low-dose Protocol in Chest CT: Comparison of Standard-dose Protocol

흉부 CT촬영에서 저선량 프로토콜의 선량과 화질: 표준선량 프로토콜과 비교

  • Lee, Won-Jeong (Occupational Lung Diseases Institute, KCOMWEL) ;
  • Ahn, Bong-Seon (Department of Radiological Technology, Daejeon Health Science College) ;
  • Park, Young-Sun (Department of Radiological Technology, Daejeon Health Science College)
  • 이원정 (근로복지공단 직업성폐질환연구소) ;
  • 안봉선 (대전보건대학교 방사선과) ;
  • 박영선 (대전보건대학교 방사선과)
  • Received : 2012.03.16
  • Accepted : 2012.06.05
  • Published : 2012.06.30

Abstract

The purpose of this study was to compare radiation dose and image quality between low-dose (LDP) and standard-dose protocol (SDP). LDP (120 kVp, 30 mAs, 2-mm thickness) and SDP (120 kVp, 180 mAs, 1.2-mm thickness) images obtained from 61 subjects were retrospectively evaluated at level of carina bifurcation, using multi-detector CT (Brilliance 16, Philips Medical Systems). Signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were calculated at ascending aorta and infraspinatus muscle, from CT number and back-ground noise. Radiation dose from two protocols measured at 5-point using acrylic-phantom, and CT number and noise measured at 4-point using water-phantom. All statistical analysis were performed using SPSS 19.0 program. LDP images showed significantly more noise and a significantly lower SNR and CNR than did SDP images at ascending aorta and infraspinatus muscle. Noise, SNR and CNR were significantly correlated with body mass index (p<0.001). Radiation dose, SNR and CNR from phantom were significant differences between two protocols. LDP showed a significant reduction of radiation dose with a significant change in SNR and CNR compared with SDP. Therefore, exposure dose on LDP in clinical applications needs resetting highly more considering image quality.

임상에서 사용하고 있는 흉부 CT촬영의 저선량 프로토콜과 표준선량 프로토콜 간의 선량과 화질을 비교 분석하였다. 흉부 저선량 프로토콜(120 kVp, 30 mAs)과 표준선량 프로토콜(120 kVp, 180 mAs)로 촬영($Brilliance^{TM}$ CT 16slice, PHILIPS)한 61명의 조영제를 사용하지 않은 영상에서 기관 분기부 위치의 종격동 영상을 본 연구를 위해 사용하였다. 상행대동맥과 가시아래근에서 CT number와 잡음을 측정하였고, Back-ground 잡음을 측정하여 신호대잡음비(signal-to-noise ratio. SNR)와 대조도잡음비(contrast-to-noise ratio, CNR)를 구하였다. 두부 아크릴 팬텀을 이용하여 선량을 측정하였고, 워터 팬텀으로 얻은 영상에서 CT number와 잡음을 측정하였다. 모든 측정은 3회 실시하여 평균값을 SPSS 프로그램(version 14.0)으로 분석하였고, 그래프는 시그마 플롯 프로그램(version10.0)을 사용하였다. 결과: 상행대동맥과 가시아래근에서 저선량 프로토콜 영상이 표준선량 프로토콜 영상 보다 유의하게 높은 잡음을 보였고, SNR과 CNR은 유의하게 낮았다. 두 영상에서 비만지수에 대한 잡음은 양의 관련성을 보였지만, SNR과 CNR은 음의 관련성을 보였다. 팬텀 결과에서 저선량 프로토콜의 선량이 표준선량 프로토콜 보다 유의하게 낮았지만(0.35 mGy vs. 1.95 mGy, p=0.008), 잡음은 저선량 프로토콜에서 유의하게 높았다(p=0.029). 저선량 프로토콜이 표준선량 프로토콜 보다 유의하게 낮은 선량을 보였지만, 화질 평가도 유의하게 낮은 결과를 보임으로서 임상에서 사용하는 저선량 프로토콜의 노출 선량은 화질을 고려하여 상향 조정할 필요가 있다.

Keywords

References

  1. 건강보험심사평가원. CT촬영비용 및 장비설치현황. http://stat.kosis.kr/nsieu/index.jsp?hOrg=354.
  2. International Commission on Radiological Protection. Managing patient dose in computed tomography. ICRPPublication 87. Oxford; Pegamon Press. 2000.
  3. Rydberg J, Buckwalter KA, Caldemeyer KS, Phillips MD, Conces DJ Jr, Aisen AM, Persohn SA, Kopecky KK. Multisection CT: scanning techniques and clinical applications. Radiographics. 2000;20(6):1787-1806. https://doi.org/10.1148/radiographics.20.6.g00nv071787
  4. Tzedakis A, Damilakis J, Perisinakis K, Stratakis J, Gourtsoyiannis N. The effect of z overscanning on patient effective dose from multidetector helical computed tomography examinations. Med. Phys. 2005;32(6):1621-1629. https://doi.org/10.1118/1.1924309
  5. McCollough CH, Bruesewitz MR, Kofler(Jr) JM. CT dose reduction and dose management tools: Overview of available options. Radiographics. 2006;26(2):503-512. https://doi.org/10.1148/rg.262055138
  6. Heyer CM, Mohr PS, Lemburg SP, Peters SA, Nicolas V. Image quality and radiation exposure at pulmonary CT angiography with 100- or 120-kVp protocol: Prospective raddomized study. Radiology. 2007;245(2):577-583. https://doi.org/10.1148/radiol.2452061919
  7. Goo HW. CT radiation dose optimization and estimation: an update for radiologists. Korean. J. Radiol. 2012;13(1):1-11. https://doi.org/10.3348/kjr.2012.13.1.1
  8. Naidich DP, Marshall CH, Gribbin C, Arams RS, McCauley DI. Low-dose CT of the lungs: preliminary observations. Radiology. 1990:175(3):729-731. https://doi.org/10.1148/radiology.175.3.2343122
  9. Johkoh T, Honda O, Yamamoto S, Tomiyama N, Koyama M, Kozuka T, Mihara N, Hamada S, Narumi Y, Nakamura H, Kudo M. Evaluation of image quality and spatial resolution of low-dose high-pitch multidetector-row helical high-resolution CT in 11 autopsy lungs and a wire phantom. Radiat. Med. 2001;19(6):279-284.
  10. Fasola G, Belvedere O, Aita M, Zanin T, Follador A, Cassetti P, Meduri S, De Pangher V, Pignata G, Rosolen V, Barbone F, Grossi F. Low-dose computed tomography screening for lung cancer and pleural mesothelioma in an asbestos-exposed population: baseline results of a prospective, nonrandomized feasibility trial--an Alpe-adria Thoracic Oncology Multidisciplinary Group Study (ATOM 002). Oncologist. 2007;12(10):1215-1224. https://doi.org/10.1634/theoncologist.12-10-1215
  11. Stolzmann P, Leschka S, Betschart T, Desbiolles L, Flohr TG, Marincek B, Alkadhi H. Radiation dose values for various coronary calcium scoring protocols in dual-source CT. Int. J. Cardiovasc. Imaging. 2009;25(4):443-451. https://doi.org/10.1007/s10554-008-9397-y
  12. Prakash P, Kalra MK, Gilman MD, Shepard JAO, Digumarthy SR. Is weight-based adjustment of automatic exposure control necessary for the reduction of chest CT radiation dose? Korean. J. Radiol. 2010;11(1):46-53. https://doi.org/10.3348/kjr.2010.11.1.46
  13. Kubo T, Lin PJ, Stiller W, Takahashi M, Kauczor HU, Ohno Y, Hatabu H. Radiation dose reduction in chest CT: a review. AJR. Am. J. Roentgenol. 2008;190(2):335-343. https://doi.org/10.2214/AJR.07.2556
  14. Itoh S, Ikeda M, Arahata S Kodaira T, Isomura T, Kato T, Yamakawa K, Maruyama K, Ishigaki T. Lung cancer screening: minimum tube current required for helical CT. Radiology. 2000;215(1): 175-183. https://doi.org/10.1148/radiology.215.1.r00ap16175
  15. 한국의료영상품질관리원. 전산화단층촬영장치 품질관리 검사. http://www.ikiami.or.kr/info/KMI417QD.aspx
  16. Huda W, Ogden KM, Khorasani MR. Converting dose-length product to effective dose at CT. Radiology. 2008;248(3):995-1003. https://doi.org/10.1148/radiol.2483071964
  17. Qi W, Li J, Du X. Method for automatic tube current selection for obtaining a consistent image quality and dose optimization in a cardiac multidetector CT. Korean J Radiol. 2009;10(6):568-574. https://doi.org/10.3348/kjr.2009.10.6.568
  18. Park EA, Lee W, Kang JH, Yin YH, Chung JW, Park JH. The Image Quality and Radiation Dose of 100-kVp versus 120-kVp ECG-Gated 16-Slice CT Coronary Angiography. Korean. J. Radiol. 2009;10(3): 235-243. https://doi.org/10.3348/kjr.2009.10.3.235
  19. Takahashi M, Maguire WM, Ashtari M, Khan A, Papp Z, Alberico R, Campbell W, Eacobacci T, Herman PG. Low-dose spiral computed tomography of the thorax comparison with the standard-dose technique. Invest. Radiol. 1998; 33(2):68-73. https://doi.org/10.1097/00004424-199802000-00002
  20. Prasad SR, Wittram C, Shepard JA, McLoud T, Rhea J. Standard-dose and 50%-reduced-dose chest CT: comparing the effect on image quality. AJR. Am. J. Roentgenol. 2002;179(2):461-465. https://doi.org/10.2214/ajr.179.2.1790461

Cited by

  1. A Study of The Correlation of The Area Dose with Residual CT Contrast Media and MRI Contrast Media during The Use of General Imaging Automatic Exposure Control System vol.10, pp.8, 2016, https://doi.org/10.7742/jksr.2016.10.8.619
  2. Development and Characterization of a Dosimeter Using Tissue-Equivalent Scintillator by Photon-Counting Method vol.23, pp.1, 2014, https://doi.org/10.5369/JSST.2014.23.1.29
  3. Liver CT 검사에서 프로토콜 변화에 따른 선량 감소와 영상의 질 개선에 관한 연구 vol.38, pp.2, 2012, https://doi.org/10.17946/jrst.2015.38.2.04
  4. 급성 뇌졸중 환자의 시공간 분석 기법을 이용한 동적 전산화 단층 검사: 예비 연구 vol.39, pp.4, 2012, https://doi.org/10.17946/jrst.2016.39.4.08
  5. 뇌혈관 검사 시 최적의 영상 진단장치 선정에 관한 연구: MRA, CTA, DSA, 영상 진단장치 중심으로 vol.11, pp.7, 2017, https://doi.org/10.7742/jksr.2017.11.7.637
  6. 두부 CT 선량감소를 위한 총변량 최적화의 적용 vol.12, pp.6, 2012, https://doi.org/10.7742/jksr.2018.12.6.707
  7. 두부 CT의 노출 파라메타에 따른 화질과 선량의 변화 vol.13, pp.5, 2019, https://doi.org/10.7742/jksr.2019.13.5.705
  8. 비 인두 자기공명 검사 시 최적의 진단영상 장치 선택에 관한 정량, 정성적 평가에 관한 연구 vol.13, pp.7, 2012, https://doi.org/10.7742/jksr.2019.13.7.1035