• Title/Summary/Keyword: Point A dose

Search Result 573, Processing Time 0.029 seconds

A new method to calculate a standard set of finite cloud dose correction factors for the level 3 probabilistic safety assessment of nuclear power plants

  • Gee Man Lee;Woo Sik Jung
    • Nuclear Engineering and Technology
    • /
    • v.56 no.4
    • /
    • pp.1225-1233
    • /
    • 2024
  • Level 3 probabilistic safety assessment (PSA) is performed to calculate radionuclide concentrations and exposure dose resulting from nuclear power plant accidents. To calculate the external exposure dose from the released radioactive materials, the radionuclide concentrations are multiplied by two factors of dose coefficient and a finite cloud dose correction factor (FCDCF), and the obtained values are summed. This indicates that a standard set of FCDCFs is required for external exposure dose calculations. To calculate a standard set of FCDCFs, the effective distance from the release point to the receptor along the wind direction should be predetermined. The TID-24190 document published in 1968 provides equations to calculate FCDCFs and the resultant standard set of FCDCFs. However, it does not provide any explanation on the effective distance required to calculate the standard set of FCDCFs. In 2021, Sandia National Laboratories (SNLs) proposed a method to predetermine finite effective distances depending on the atmospheric stability classes A to F, which results in six standard sets of FCDCFs. Meanwhile, independently of the SNLs, the authors of this paper discovered that an infinite effective distance assumption is a very reasonable approach to calculate one standard set of FCDCFs, and they implemented it into the multi-unit radiological consequence calculator (MURCC) code, which is a post-processor of the level 3 PSA codes. This paper calculates and compares short- and long-range FCDCFs calculated using the TID-24190, SNLs method, and MURCC method, and explains the strength of the MURCC method over the SNLs method. Although six standard sets of FCDCFs are required by the SNLs method, one standard sets of FCDCFs are sufficient by the MURCC method. Additionally, the use of the MURCC method and its resultant FCDCFs for level 3 PSA was strongly recommended.

High Dose Rate Cobalt-60 After Loading Intracavitary Therapy of the Uterine Cervical Carcinoma in Srinagarind Hospital, Analysis of Residual Disease

  • Pesee, Montien;Krusun, Srichai;Padoongcharoen, Prawat
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.9
    • /
    • pp.4835-4837
    • /
    • 2012
  • Objectives: To evaluate residual disease in uterine cervical cancer patients treated with teletherapy using combined high dose rate Cobalt-60 brachytherapy. Materials and Methods: A retrospective study of uterine cervical cancer patients, FIGO stages IB-IVB (International Federation of Gynecologists and Obstetricians recommendations), treated by radiotherapy alone between April 1986 and December 1988 was conducted and the outcomes analysed. The patients were treated using teletherapy 50 Gy/25 fractions, five fractions per week to the whole pelvis together with HDR Cobalt -60 afterloading brachytherapy of 850 cGy/fraction, weekly to point A for 2 fractions. Results: The study covered 141 patients with uterine cervical cancer. The mean age was 50.0 years with a range of 30-78 years. The mean tumor size was 4.1 cm in diameter (range 1-8 cm). Mean follow - up time was 2.94 years (range 1 month-6.92 years). The overall incidence of residual locoregional disease was 3.5%. Residual disease, according to stage IIB, IIIB and IVA was present in 2.78%, 3.37% and 50.0%. It was noted that there was no evidence of residual disease in stage IB and IIA cases. Conclusion: Combined teletherapy along with high dose rate Cobalt -60 brachytherapy of 850 cGy/fraction, weekly to point A for 2 fractions resulted in overall 3.5% residual disease and a 96.5% complete response. The proposed recommendation for improving outcome is initiation of measurements for early detection of disease.

Mechanism of Arsenic-Induced Cytotoxiciht in CHO Cells (CHO 세포에서 비소의 세포독성기전)

  • 정해원;기혜성;박영철;한정호;유일재
    • Environmental Mutagens and Carcinogens
    • /
    • v.16 no.2
    • /
    • pp.117-123
    • /
    • 1996
  • This study was carried out to examine the mechanism of Arsenic cytotoxicity through several in vitro test systems. Dose-dependent decrease of cell survival by Arsenic was observed by colony forming assay. Arsenic was weak mutagenic in inducing HGPRT point mutation in CHO cells. The frequency of chromosomal aberrations increased in a dose-dependent manner and the most frequent type of chromosomal aberrations induced by Arsenic were chromatid type deletions. U!trafiltrates of culture media from CHO cells treated with Arsenic induced sister chromatid exchanges(SCE) in CHO cells and Arsenic was able to induce lipid peroxidation in CHO cells. The results suggested that the ultrafiltrates of media from CHO cells treated with Arsenic contain clastogenic factor(CF) and Iipid peroxidation might be involved in the formation of CF.

  • PDF

Central Axis Percentage Depth-Dose in a Water Phantom Irradiated by Conventional X-rays (Water Phantom 속 Conventional X-ray 중심축상의 깊이 선량 백분율)

  • Kim, Wuon-Shik;Hah, Suck-Ho;Hwang, Sun-Tae;Oh, Jang-Jin;Jun, Jae-Shik
    • Journal of Radiation Protection and Research
    • /
    • v.12 no.1
    • /
    • pp.1-11
    • /
    • 1987
  • Central axis percentage depth-doses, P(%), were measured at the points from the 2.5cm depth of reference point to 20 cm depth with 2.5 cm interval. Distance from the X-ray target to the water phantom($30{\times}30{\times}30cm^3$) surface was 1 m, and at this point three different beam sizes of $5cm{\phi},\;10cm{\phi},\;and\;15cm{\phi}$ were used. While the X-ray tube voltage varied from 150 to 250 kV, the tube current remained constant at 5 mA. Absorbed dose rate in water, $\dot{D}_w$, was determined using the air kerma calibration factor, $N_k$, which was derived from the exposure calibration factor, $N_x$, of the NE 2571 ion chamber. The reference exposure rate, $\dot{X}_c$, was measured using the Exradin A-2 ion chamber calibrated at ETL, Japan. The half value layers of the X-rays determined to meet ETL calibration qualities. The absorbed dose rates determined at the calibration point were compared to the values obtained from Burlin's general cavity theory, and the percentage depth-dose values determined from $N_k$ showed a good agreement with the values of the published depth dose data(BJR Suppl. 17).

  • PDF

Utilization of Tissue Compensator for Uniform Dose Distribution in Total Body Irradiation (전신방사선조사시 균등한 선량분포를 이루기 위한 조직보상체의 이용)

  • Park, Seung-Jin;Chung, Woong-Ki;Ahn, Sung-Ja;Nam, Taek-Keun;Nah, Byung-Sik
    • Radiation Oncology Journal
    • /
    • v.12 no.2
    • /
    • pp.233-241
    • /
    • 1994
  • Purpose : This study was performed to verify dose distribution with the tissue compensator which is used for uniform dose distribution in total body irradiation(TBI). Materials and methods : The compensators were made of lead(0.8mm thickness) and aluminum(1mm or 5mm thickness) plates. The humanoid phantom of adult size was made of paraffin as a real treatment position for bilateral total body technique. The humanoid phantom was set at 360cm of source-axis distance(SAD) and irradiated with geographical field size(FS) $144{\times}144cm^2(40{\times}40cm^2$ at SAD 100cm) which covered the entire phantom. Irradiation was done with 10MV X-ray(CLINAC 1800, Varian Co., USA) of linear accelerator set at Department of Therapeutic Radiology, Chonnam University Hospital. The midline absorbed dose was checked at the various regions such as head, mouth, mid-neck, sternal notch, mid-mediastinum, xiphoid, umbilicus, pelvis, knee and ankle with or without compensator, respectively. We used exposure/exposure rate meter(model 192, Capintec Inc., USA) with ionization chamber(PR 05) for dosimetry, For the dosimetry of thorax region TLD rods of $1x1x6mm^3$ in volume(LiF, Harshaw Co., Netherland) was used at the commercially available humanoid phantom. Results : The absorbed dose of each point without tissue compensator revealed significant difference(from $-11.8\%\;to\;21.1\%$) compared with the umbilicus dose which is a dose prescription point in TBI. The absorbed dose without compensator at sternal notch including shoulder was $11.8\%$ less than the dose of umbilicus. With lead compensator the absorbed doses ranged from $+1.3\%\;to\;-5.3\%$ except mid-neck which revealed over-compensation($-7.9\%$). In case of aluminum compensator the absorbed doses were measured with less difference(from $-2.6{\%}\;to\;5.3\%$) compared with umbilicus dose. Conclusion : Both of lead and aluminum compensators applied to the skull or lower leg revealed a good compensation effect. It was recognized that boost irradiation or choosing reference point of dose prescription at sternal notch according to the lateral thickness of patient in TBI should be considered.

  • PDF

Preliminary Results of Concurrent Chemotherapy and Radiation Therapy using High-dose-rate Brachytherapy for Cervical Cancer (자궁경부암에 항암화학요법과 동시 병용요법으로 외부 방사선조사와 고선량률 강내조사의 예비적 치료 결과)

  • Lee, Kyung-Ja;Lee, Ji-Hye;Lee, Re-Na;Suh, Hyun-Suk
    • Radiation Oncology Journal
    • /
    • v.24 no.3
    • /
    • pp.171-178
    • /
    • 2006
  • [ $\underline{Purpose}$ ]: To determine the efficacy and safety of concurrent chemotherapy and radiation therapy with high-dose-rate brachytherapy for cervical cancer. $\underline{Materials\;and\;Methods}$: From January 2001 to December 2002, 30 patients with cervical cancer were treated with concurrent chemotherapy (cisplatin and 5-FU) and definitive radiation therapy. The median age was 58 (range $34{\sim}74$) year old. The pathology of the biopsy sections was squamous cell carcinoma in 29 patients and one was adenocarcinoma. The distribution to FIGO staging system was as follows: stage IB, 7 (23%); IIA, 3 (10%); IIB, 12 (40%); IIIA, 3 (10%); IIIB, 5 (17%). All patients received pelvic external beam irradiation (EBRT) to a total dose of $45{\sim}50.4\;Gy$ (median: 50.4 Gy) over $5{\sim}5.5$ weeks. Ir-192 HDR intracavitary brachytherapy (ICBT) was given after a total dose of 41.4 Gy. HDR-ICBT was performed twice a week, with a fraction point A dose of 4 Gy and median dose to point A was 28 Gy (range: $16{\sim}32\;Gy$) in 7 fractions. The median cumulative biologic effective dose (BED) at point A (EBRT+ICBT) was $88\;Gy_{10}$ (range: $77{\sim}94\;Gy_{10}$). The median cumulative BED at ICRU 38 reference point (EBRT+ICBT) was $131\;Gy_3$ (range: $122{\sim}140\;Gy_3$) at point A, $109\;Gy_3$ (range: $88{\sim}125\;Gy_3$) at the rectum and $111\;Gy_3$ (range: $91{\sim}123\;Gy_3$) at the urinary bladder. Cisplatin ($60\;mg/m^2$) and 5-FU ($1,000\;mg/m^2$) was administered intravenously at 3 weeks interval from the first day of radiation for median 5 (range: $2{\sim}6$) cycles. The assessment was performed at 1 month after completion of radiation therapy by clinical examination and CT scan. The median follow-up time was 36 months (range: $8{\sim}50$ months). $\underline{: The complete response rate after concurrent chemoradiation therapy was 93.3%. The 3-yr actuarial pelvic control rate was 87% and 3-yr actuarial overall survival and disease-free survival rate was 93% and 87%, respectively. The local failure rate was 13% and distant metastatic rate was 3.3%. The crude rate of minor hematologic complications (RTOG grade 1-2) occurred in 3 patients (10%) and one patient had suffered from severe leukopenia (RTOG grade 4) during concurrent treatment. Acute minor enterocolitis (RTOG grade 1-2) occurred in 11 patients (37%) and one patient (3%) was suffered from colon perforation during radiation therapy. Late colitis of RTOG grade 1 occurred in 5 patients (15%). Acute cystitis of RTOG grade 1 occurred in 12 patients (40%) and late cystitis of RTOG grade 2 occurred in one patient (3%). No treatment related death was seen. $\underline{Conclusion}$: The results of this study suggest that the concurrent chemoradiation therapy with HDR brachytherapy could be accepted as an effective and safe treatment for cervical cancer.

Study on the Exposure Field of Head and Neck with Measurement of X-ray dose Distribution for Dental Panoramic X-ray System (치과 파노라마 장치의 X선 공간선량분포 측정을 통한 두경부 피폭영역 조사에 대한 연구)

  • Oh, Yoonjin;Hong, Girang;Lee, Samyol
    • Journal of the Korean Society of Radiology
    • /
    • v.9 no.1
    • /
    • pp.17-21
    • /
    • 2015
  • Recently, As people's interest in the health of teeth is increased in the medical field changed into aging society, the number of times for the radiological diagnosis is increased. It can be said that the radiation exposure dose of Korean population is increased. It is also growing concern about radiation exposure. Therefore, the basic data for the dental panoramic X-ray system, its investigation and measuring the radiation dose is needed. In this study, we used ALOKA PDM-117 dosimeter and estimated a two-dimensional dose distribution of the dental panoramic X-ray system (VATEC Pax-400). Dose evaluation about the distribution is confirmed from the point of radiation exposure of a patient. Dose distribution of the dental panoramic X-ray system irradiated chin and the facial region to high dose as well as the parts of teeth. It was founded that the eye lens which are sensitive to radiation are exposed to unnecessary radiation, considering the effect of scattered radiation. The results of this study will be used more accurate dose assessment in a variety of object size and location of measuring dose.

The Optimization Experience of Occupational Exposure during Unclear Power Plant Outage (원자력발전소 계획예방정비 기간중 피폭최적화 경험)

  • Song, Young-Il;Kim, Hyung-Jin;Park, Hun-Kook;Kim, Hee-Geun
    • Journal of Radiation Protection and Research
    • /
    • v.28 no.2
    • /
    • pp.145-154
    • /
    • 2003
  • By optimizing the radiation protection the collective dose and individual dose could be reduced during YGN #4 $5^{th}$ outage in 2001. The collective doses for the two high radiation jobs decreased to 85% and 65% of expected doses. The proportion of workers with low dose (below 1mSv) exposure increased 4% while the proportion of workers with over 3mSv and 5mSv exposure are decreased to 2%, 1% respectively. But none is exposed over 8mSv for the annual dose. To aid decision of utilizing the robot, cost- benefit analysis was performed and reasonable point was proposed to use the robot. For the first time job, repeated ALARA meeting and mock up training were implemented to set up working procedure by identifying the trouble. To easily set up standard procedure, mockup process was videotaped and reviewed during ALARA meeting. Monitoring is a good approach to chase radiological working condition such as working time, dose rate. behavior of workers, especially for high radiation work. Those data were estimated and adjusted from the stage of work planning to mock up. At the stage of actual work the monitoring data were compared to the estimation and recorded to database. This database will not only be used as a powerful tool for dose optimization at the following outage but also as a guideline to dose constraint set up for optimization for each specific situation.

Radiological safety analysis of a newly designed spent resin mixture treatment facility during normal and abnormal operational scenarios for the safety of radiation workers

  • Jaehoon Byun;Seungbin Yoon;Hee Reyoung Kim
    • Nuclear Engineering and Technology
    • /
    • v.55 no.5
    • /
    • pp.1935-1945
    • /
    • 2023
  • The radiological safety of workers in a newly developed microwave-based spent resin treatment facility was assessed based on work location and operational scenarios. The results show that the remote-operation room worker was exposed to maximum annual dose of 3.19E+00 mSv, which is 15.9% of the dose limit, thereby confirming radiological safety. Inside the pathway, annual doses in the range of 7.87E-02-2.07E-01 mSv were measured initially at the mock-up tank and later at the point between the spent resin separation and treatment parts. The dose of emergency maintenance workers was below the dose limit (4.08E-03-4.99E+00 mSv); however, before treatment (separation and microwave), the dose of maintenance and repair workers exceeded the dose limit. The doses of the effluent removal workers at the zeolite and activated carbon storage tank and spent resin storage tank were the lowest at 2.79E-01-2.87E-01 mSv and 9.27E-01 mSv in "1 h" and "4-5 h of operation", respectively. The immediately lower and upper layers of the facility room exhibited the highest annual doses of 1.84E+00 and 3.22E+00 mSv, respectively. Through this study, a scenario that can minimize the dose considering the movement of spent resin through the facility can be developed.

Dose Assessment of the Eye of the Operator in the Field of Angiography and Interventional Radiography (혈관조영 및 중재적 시술 분야 내 종사자의 눈에 대한 선량평가)

  • Kim, Jung-hoon;Cho, Yong-In
    • Journal of the Korean Society of Radiology
    • /
    • v.12 no.2
    • /
    • pp.209-216
    • /
    • 2018
  • In the field of angiography and interventional radiology, it is said that the risk of radiation exposure to the eyes is high due to the characteristics of work, but currently divided dose assessment and management are not carried out in reality. Therefore, in this study, in order to evaluate the dose of the operator in the surgical environment and to analyze the shields, firstly, we selected the point where the operator is mainly located, evaluated the exposure dose of the eye after attaching the pocket dosimeter to the lateral angle point of the head and neck phantom, and evaluate shielding effect when wearing lead glasses that is currently commercialized. Secondly, we evaluated the tendency of the exposure dose of the eye and the shielding effect through simulation in the same geometric structure as the actual measurement. As a result, in the case of measurement using a dosimeter, the cumulative dose increased with the increase of the fluoroscopic time, and the tendency was different according to the position of the operator. Simulation results show that the dose distribution of the eye lens in the mathematical phantom is about 1.1 ~ 1.3 times higher than that of the cornea. Also, The protective effect of the lead glasses showed a shielding effect of at least 3.7 ~ 21.4% in each eye.