• 제목/요약/키워드: Pohang basin

검색결과 90건 처리시간 0.022초

포항지역 신생대 제3기 미고결 퇴적층의 암반분류 (Rock Mass Classification of Tertiary Unconsolidated Sedimentary Rocks In Pohang Area)

  • 김성욱;최은경;이융희
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2009년도 춘계 학술발표회
    • /
    • pp.999-1008
    • /
    • 2009
  • A series of sedimentary rocks which are formed in the Tertiary are distributed around Samcheok(Samcheok-Pukpyoung basin), Younghae(Younghae basin), Pohang(Pohang basin), Gyeongju(Yangnam basin), Ulsan(Ulsan basin), Jeju(Seogyuipo formation) in the southern region of the Korean Peninsula. This study concerned with geological, geophysical, geotechnical properties of the unconsolidated rocks in the Pohang area. A consolidated rocks are classified as hard rock - soft rock - weathered rock - residual soil follows in degree of weathering. But unconsolidated rocks has soil properties as well as rock's at the same time. The results of field excursion, boring, borehole-logging, rock testing, geophysical survey, laboratory test are soft rock range, but the durability of the rock until the residual soil from the weathered rock. We accomplished the rock mass classification of the unconsolidated rocks.

  • PDF

한반도의 제3기 분지와 포항분지내 지질구조 연구 (Tertiary basin in Korean peninsula and the study of geologic structure at Pohang basin)

  • 이병주
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2002년도 암반역학위원회 학술세미나 논문집
    • /
    • pp.3-17
    • /
    • 2002
  • Tertiary Pohang basin distributed in south weatern part of the korean peninsula, is composed of Chunbuk formation as the basal conglomerate, Hakjon formation, Duho formation and intrusive basalt which is 15 Ma by absolute age data. The basement of the basin is represented by Cretaceous sedimentary rocks, Hakjon welded tuff and Chilpo welded tuff and rhyolite. The fault systems at the basement of the Pohang basin are consist of NNE direction fault, WNW to EW trend fault. NNE fault is not only strike-slip fault but also normal fault. n fault has sinistral strike-slip sene and the EW fault is strike-slip and normal fault. In the Tertiary basin, the fault system is represented by nm strike-slip fault, EW normal fault and NNE thrust fault. By these fault relationships and geometries, it is interpreted that NNE sinistral strike-slip fault and nomal fault have acted at Creceous times. At Tertiary tines, NNE dextralstrike-slip fault and EW normal fault has created. Progressively Tertiary Pohang basin was influenced by the trenspression to make thrust fault and fold, namely as inversion tectonics.

  • PDF

포항분지에 대한 석유지질학적 연구

  • 김기현;김재호;김상석;박동배;이용일
    • 한국석유지질학회:학술대회논문집
    • /
    • 한국석유지질학회 1998년도 제5차 학술발표회 발표논문집
    • /
    • pp.48-55
    • /
    • 1998
  • The Pohang Basin is located in Pohang City and adjacent coastal areas in the southeastern Korea. It has a sequence of 900 meters of Neogene marine sediments (Yeonil Group) while offshore basins in the East Sea, e.g., the Ulleng basin, is over 10 Km in thickness. An understanding of the marine Yeonil Group in the Pohang Basin may provide insights into the hydrocarbon potential of the offshore East Sea regions. Heulandite, smectite, dolomite, kaolinite and opal-CT are commonly found as diagenetic minerals in the Yeonil Group. Among these minerals, heulandite occurs as a main cement only in sandstones consisting of volcanic matrix, Smectite composition and diagenetic mineral facies such as heulandite and opal-CT may reflect that the Yeonil Group has undergone shallow burial, temperatures below about 60 degrees. This suggest that sandstones have experiened weak diagenetic alteration. In order to reconstruct the thermal history of the basin, apatite fission-track analysis was carried out. Aapparent apatite fission-track ages (AFTAs) exhibit a broader range of ages from 238 Ma to 27 Ma with mean track lengths in the range of $15.24\pm8.0$ micrometers, indicating that these samples had undergone significant predepositional thermal alteration. The Triassic to Cretaceous AFTAs seem In represent the timing of cooling of their sedimentary sources. Late Cretaceous mean AFTA $(79.0\pm8.0 Ma)$ on the Neogene Yeonil Group indicates that the Yeonil Group had not been buried deeper than 2km since its deposition. The organic matters of. the Pohang Basin remain in the immature stage of thermal evolution because burial depth and temperature were not sufficient enough for maturation even in the deep section of the basin.

  • PDF

한반도 동남부 마이오세 포항분지 남서부(보문지역)의 지질구조와 확장형식 (Geological Structures and Extension Mode of the Southwestern Part(Bomun Area) of the Miocene Pohang Basin, SE Korea)

  • 송철우;김민철;임혜원;손문
    • 광물과 암석
    • /
    • 제35권3호
    • /
    • pp.235-258
    • /
    • 2022
  • 한반도 동남부에서 가장 규모가 큰 마이오세 포항분지의 남서부를 대상으로 상세한 지질도 작성과 지질구조를 분석하여 분지 발달사를 해석하였다. 포항분지 남서부는 북북동 방향의 분지 내 지구내지루에 의해 기하와 변형사가 서로 다른 서쪽의 보문구역과 동쪽의 오천구역으로 나누어진다. 보문구역은 포항분지 초기 확장 이후 거의 변형되지 않은 반면, 오천구역은 충전물의 퇴적 이후에도 후기 변형이 지속·중첩된 지역이다. 따라서 보문구역은 포항분지 최초 확장 형식에 대한 중요한 정보를 제공한다. 보문구역은 북북동 방향의 정단층들과 북북서(북서) 방향의 우수향 주향이동단층 분절들이 지그재그로 이어진 서편 경계단층에 의해 침강이 주도되었으며, 이 경계단층은 남쪽으로 한반도 동남부 마이오세 지각변형의 서쪽 한계선이며 우수향 주향이동성 주변위대로 알려진 연일구조선과 연결된다. 따라서 포항분지는 17-16.5 Ma 경 활동을 시작한 연일구조선 북쪽 말단에 우향스텝 형태로 생성된 북북동 방향의 정단층 또는 사교이동단층에 의해 서북서-동남동 방향으로 확장된 횡인장단층말단분지로 최초 침강된 것으로 해석된다. 이로 인해 보문구역에는 서쪽으로 갈수록 분지의 깊이가 더 깊어지는 북북동 방향의 비대칭 지구 또는 반지구가 생성되었다. 이후 포항분지의 확장과 변형은 오천구역을 포함하는 보다 동편 지역으로 이동하였다.

중력탐사(重力探査)에 의(依)한 경상층군내(慶尙層群內) 왜관(倭館)-포항간(浦項間)의 지하구조(地下構造) 연구(硏究) (Gravity Survey on the Subsurface Structure between Waekwan-Pohang in Kyoungsang Basin)

  • 민경덕;정종대
    • 자원환경지질
    • /
    • 제18권4호
    • /
    • pp.321-329
    • /
    • 1985
  • The gravity measurement has been conducted at 113 stations with an interval of about 1km along the national road of about 120km running from Busangdong to Pohang through Waekwan, Daegu, Youngchun and Aankang. The subsurface geology and structure along the survey line is interpreted from Bouguer anomaly by applying Fourier method and Talwani method for two dimensional body. The mean depth of Moho discontinuity is 31.4km, and the depth decreases very slowly from inner continent toward east coast. The depth of Conrad discontinuity increases from 11km at the east coastal area to 17km at the inner continental area, and especially increases rapidly in the area between Waekwan to Busangdong. The depth of basement of Kyoungsang Basin inereases from near Waekwan toward Daegu upto about 4. 8km, and increases rapidly to reach the maximum depth of about 8.5km at 8km east of Daegu. But it starts to decrease from the place of 10km west of Youngchun, and is about 7.2km at Youngchun and about 6km at 6km east of Youngchun. The depth starts to increase smoothly beyond this point, and is 7km at 15km east of Youngchun. From this point, the depth starts to decrease again, and is about 3.8km at Ankang. The depth of basement of Pohang Basin is 500m at Pohang and about 650m at 5km west of Pohang. A massive granite body which is considered to be a part of Palgongsan Granite exposed at the depth of 1. 5km at 9km west of Youngchun. Another massive granite body is situated underneath the Pohang Basin at depth of 1.5 to 2km, and sedimentary rocks of Kyoungsang Group and volcanic rocks are distributed between Pohang Basin and this granite body. Finally, Yangsan Fault is identified at about 2.5km east of Ankang.

  • PDF

포항분지내 지각변형 해석 (Interpretation of geologic structure in Tertiary Pohang basin, Korea)

  • 이병주;송교영
    • 자원환경지질
    • /
    • 제28권1호
    • /
    • pp.69-77
    • /
    • 1995
  • Tertiary Pohang basin distributed in south western part of the Korean peninsula, is composed of Chunbuk formation as the basal conglomerate, Hakjon formation, Duho formation and intrusive basalt having 15 Ma by absolute age data. The basement of the basin is represented to Cretaceous sedimentary rocks, Hakjon welded tuff and Chilpo welded tuff and rhyolite. The fault systems in the basement of Tertiary Pohang basin are consist of $N20^{\circ}E$ fault, $N60^{\circ}W$ and E-W trend. NNE fault is not only strike-slip but also normal dip-slip. WNW fault has sinistral strike-slip sense and the geometry of E-W fault is strike-slip and normal faults. In the basin, the fault system is represented to $N20^{\circ}E$ strike-slip, E-W normal and NNE thrust faults. By these fault relationship and geometry, it is interpreted that NNE sinistral strike-slip fault and N-S normal faults have acted at the Cretaceous basement. After Miocene NNE dextral strike-slip fault has acted and created E-W normal fault. Progressively Tertiary basin was influenced by the transpression to make thrust and fold, namely inversion tectonics.

  • PDF

한국(韓國) 동해대륙단(東海大陸端) 해저지질(海底地質) (Submarine Geology of Continental Margin of the East Sea, Korea)

  • 김종수
    • 자원환경지질
    • /
    • 제15권2호
    • /
    • pp.65-88
    • /
    • 1982
  • In the last ten years, marine geological and geophysical survey and research were conducted by Japanese, Russian and American scientists in the East Sea of Korea (Japan Sea). Many research results were published. However, regional research of the geology of the continental margin of the Korean Peninsula was not conducted. This study has made on attempt to classify submarine strata and stratigraphic boundaries. The study has revealed characters of submarine geology and structure. Isopach maps of each identified stratigraphic unit have been constructed as the results of this study. The study was conducted on the basis of analyses of marine seismic surveys carried out in the continental margin of the East Sea between Kangneung and Pohang. Three depositional basins were identified in the study area and they were named as, Mukho Basin, Hupo Basin and Pohang Basin. The Mukho Basin is developed in continental slope and shelf in the area between Kangneung and Samcheog. Quaternary and Pliocene sediments attain a maximum thickness of 900 m. Basement rocks are interpreted as granite and gneiss. They are correlated with granite-gneiss of the Taebaecksan Series of Pre-cambrian age and the Daebo granite of Jurassic age. The Hupo Basin is developed in the continental shelf between Uljin and Youngdeok. Quaternary and Pliocene sediments attain a maximum thickness of 600 m. Basement rocks were interpreted as granite and gneiss and they are correlated with metamorphic rocks of Pre-cambrian age and the Daebo granites, comprising the Ryongnam Massif. The Pohang Basin is developed in the area between Pohang and Gangu. This basin contains Miocene and older sediments. Basement rocks are not shown. Many faults are developed within the continental shelf and slope. These faults strike parallel with the coast line. A north-south direction is predominant in the southern study area. However, in the northern study area the faults strike north, and north-west. The faults are parallel to each other and are step faults down-thrown to the east or west, forming horst and graben structures which develop into sedimentary basins. Such faults caused the development of submarine banks along the boundary between the continental shelf and slope. This bank has acted as a barrier for deposition in the Hupo Basin. Paleozoic sedimentary rocks distributed widely in the adjacent land area are absent in the Mukho Basin. This suggests that the area of the basin was situated above the sea level until the Pliocene time. The study area contains Pliocene sediments in general. These sediments overlie the basement complex composed of metamorphic rocks, granites, Cretaceous (Kyongsang System) sedimentary rocks and Miocene sedimentary rocks. These facts lead to a conclusion that the continental shelf and slope of the study area were developed as a result of displacements along faults oriented parallel to the present coast line in the post Miocene time.

  • PDF

포항 흥해지역에서 포항분지의 변형작용사와 2017 포항지진(Mw 5.4) 동시성 지표변형 특성 고찰 (Deformation History of the Pohang Basin in the Heunghae Area, Pohang and Consideration on Characteristics of Coseismic Ground Deformations of the 2017 Pohang Earthquake (Mw 5.4), Korea)

  • 강지훈
    • 광물과 암석
    • /
    • 제35권4호
    • /
    • pp.485-505
    • /
    • 2022
  • 2017년 11월 15일 Mw 5.4의 포항지진은 흥해지역 지하 약 4 km의 진원 깊이에서 발생하여 포항시에 막대한 피해를 끼쳤다. 포항분지의 중부에 해당하는 흥해지역은 백악기 경상누층군과 백악기 말~고신생기 초불국사 화성암류를 기반암으로 하여 포항분지 충전물인 신신생기 연일층군이 분포한다. 이 논문에서는 포항분지에서 지각변형물(습곡, 단층, 절리)과 포항지진 동시성 지표변형물(모래화산, 지표균열, 팝업구조)에 대한 구조지질학적 연구를 수행하여 포항분지의 변형작용사와 포항지진 동시성 지표변형의 특성을 고찰해 보았다. 연구지역의 지각변형물은 제4기 단층운동 이전까지 적어도 5회의 변형단계를 거쳐 형성되었다: (북)북동 주향에 고각 경사하는 정이동(곡강단층) 단층 형성단계, 연일층군에 광역적으로 인지되는 동-서 방향의 고각 절리와 이에 (준)평행한 단층 형성단계, 동-서 주향에 중각 내지 저각 경사하는 공액상 정이동 단층(흥해단층과 형산단층)과 이에 수반된 동-서 계열의 습곡 형성단계, (역이동성) 좌수향 주향이동의 (북)북서 방향 단층조와 우수향 주향이동의 동-서(북동) 방향 단층조가 고각으로 경사하는 공액상 주향이동 단층 형성단계, 북북동과 북북서 주향에 중각 경사하는 공액상 역이동 단층과 이에 수반된 남-북 계열의 습곡 형성단계. 포항지진 동시성 지표변형물에서 모래화산은 종종 지표균열과 (준)평행한 선상배열을 보인다. 남-북 내지 (북)북동 방향의 팝업구조와 지표균열, 동-서 내지 서북서 방향의 지표균열 등은 포항지진 발생 응력원의 최대수평응력에 의한 지진원 단층의 역이동성 운동과 이에 수반된 상반지괴의 좌굴습곡작용에 의해 형성되었다. 이러한 구조적 활동은 지진원 단층의 상반지괴에 해당하는 포항시 흥해읍 중심으로 광범위하게 발생하여 이곳에 막대한 재산 피해를 끼쳤다.

영일만 해상 포항분지 소규모 CO2 지중저장 실증을 위한 부지 탐사 결과 (Result of CO2 Geological Storage Site Survey for Small-scale Demonstration in Pohang Basin, Yeongil Bay, SE Korea)

  • 신영재;권이균;윤종렬;김병엽;정순홍
    • 지질공학
    • /
    • 제28권2호
    • /
    • pp.161-174
    • /
    • 2018
  • 소규모 이산화탄소 주입 실증 부지를 탐색하기 위해 포항분지 영일만 연안에서 취득한 탄성파 탐사와 시추 자료를 분석하였다. 연구지역에서 기반암은 해수면 기준 심도 650~950 m에 분포하며, 상부에 사암과 역암이 우세한 퇴적층이 발달한다. 이 퇴적층은 대부분 포항분지에서 이산화탄소가 초임계 상태로 존재할 수 있는 심도(약 740 m)보다 깊은 곳에 분포한다. 또한 평균 두께가 123 m로 저장능력이 양호할 것으로 여겨진다. 상부에 올라오는 이암층은 대개 600 m 이상 두껍고 육상과 해상의 포항분지에 광역적으로 분포하고 있어 덮개 능력이 양호할 것이다. 연구지역에 발달하는 북북동 방향의 단층들은 기반암 심도에서 주로 발달하는 퇴적동시성 단층으로 수직 연장성이 불량할 것으로 해석된다. 본 연구를 통해 영일만에 위치한 포항분지 심부에서 소규모 실증에 적합한 저장층과 덮개층이 분포하고 있음을 제시하였다.

포항(浦項) 및 장기분지(盆地)에 대한 고지자기(古地磁氣), 층서(層序) 및 구조연구(構造硏究); 화산암류(火山岩類)의 K-Ar 연대(年代) (Paleomagnetism, Stratigraphy and Geologic Structure of the Tertiary Pohang and Changgi Basins; K-Ar Ages for the Volcanic Rocks)

  • 이현구;문희수;민경덕;김인수;윤혜수;이타야 테츠마루
    • 자원환경지질
    • /
    • 제25권3호
    • /
    • pp.337-349
    • /
    • 1992
  • The Tertiary basins in Korea have widely been studied by numerous researchers producing individual results in sedimentology, paleontology, stratigraphy, volcanic petrology and structural geology, but interdisciplinary studies, inter-basin analysis and basin-forming process have not been carried out yet. Major work of this study is to elucidate evidences obtained from different parts of a basin as well as different Tertiary basins (Pohang, Changgi, Eoil, Haseo and Ulsan basins) in order to build up the correlation between the basins, and an overall picture of the basin architecture and evolution in Korea. According to the paleontologic evidences the geologic age of the Pohang marine basin is dated to be late Lower Miocence to Middle Miocene, whereas other non-marine basins are older as being either Early Miocene or Oligocene(Lee, 1975, 1978: Bong, 1984: Chun, 1982: Choi et al., 1984: Yun et al., 1990: Yoon, 1982). However, detailed ages of the Tertiary sediments, and their correlations in a basin and between basins are still controversial, since the basins are separated from each other, sedimentary sequence is disturbed and intruded by voncanic rocks, and non-marine sediments are not fossiliferous to be correlated. Therefore, in this work radiometric, magnetostratigraphic, and biostratigraphic data was integrated for the refinement of chronostratigraphy and synopsis of stratigraphy of Tertiary basins of Korea. A total of 21 samples including 10 basaltic, 2 porphyritic, and 9 andesitic rocks from 4 basins were collected for the K-Ar dating of whole rock method. The obtained age can be grouped as follows: $14.8{\pm}0.4{\sim}15.2{\pm}0.4Ma$, $19.9{\pm}0.5{\sim}22.1{\pm}0.7Ma$, $18.0{\pm}1.1{\sim}20.4+0.5Ma$, and $14.6{\pm}0.7{\sim}21.1{\pm}0.5Ma$. Stratigraphically they mostly fall into the range of Lower Miocene to Mid Miocene. The oldest volcanic rock recorded is a basalt (911213-6) with the age of $22.05{\pm}0.67Ma$ near Sangjeong-ri in the Changgi (or Janggi) basin and presumed to be formed in the Early Miocene, when Changgi Conglomerate began to deposit. The youngest one (911214-9) is a basalt of $14.64{\pm}0.66Ma$ in the Haseo basin. This means the intrusive and extrusive rocks are not a product of sudden voncanic activity of short duration as previously accepted but of successive processes lasting relatively long period of 8 or 9 Ma. The radiometric age of the volcanic rocks is not randomly distributed but varies systematically with basins and localities. It becomes generlly younger to the south, namely from the Changgi basin to the Haseo basin. The rocks in the Changgi basin are dated to be from $19.92{\pm}0.47$ to $22.05{\pm}0.67Ma$. With exception of only one locality in the Geumgwangdong they all formed before 20 Ma B.P. The Eoil basalt by Tateiwa in the Eoil basin are dated to be from $20.44{\pm}0.47$ to $18.35{\pm}0.62Ma$ and they are younger than those in the Changgi basin by 2~4 Ma. Specifically, basaltic rocks in the sedimentary and voncanic sequences of the Eoil basin can be well compared to the sequence of associated sedimentary rocks. Generally they become younger to the stratigraphically upper part. Among the basin, the Haseo basin is characterized by the youngest volcanic rocks. The basalt (911214-7) which crops out in Jeongja-ri, Gangdong-myon, Ulsan-gun is $16.22{\pm}0.75Ma$ and the other one (911214-9) in coastal area, Jujon-dong, Ulsan is $14.64{\pm}0.66Ma$ old. The radiometric data are positively collaborated with the results of paleomagnetic study, pull-apart basin model and East Sea spreading theory. Especially, the successively changing age of Eoil basalts are in accordance with successively changing degree of rotation. In detail, following results are discussed. Firstly, the porphyritic rocks previously known as Cretaceous basement (911213-2, 911214-1) show the age of $43.73{\pm}1.05$$49.58{\pm}1.13Ma$(Eocene) confirms the results of Jin et al. (1988). This means sequential volcanic activity from Cretaceous up to Lower Tertiary. Secondly, intrusive andesitic rocks in the Pohang basin, which are dated to be $21.8{\pm}2.8Ma$ (Jin et al., 1988) are found out to be 15 Ma old in coincindence with the age of host strata of 16.5 Ma. Thirdly, The Quaternary basalt (911213-5 and 911213-6) of Tateiwa(1924) is not homogeneous regarding formation age and petrological characteristics. The basalt in the Changgi basin show the age of $19.92{\pm}0.47$ and $22.05{\pm}0.67$ (Miocene). The basalt (911213-8) in Sangjond-ri, which intruded Nultaeri Trachytic Tuff is dated to be $20.55{\pm}0.50Ma$, which means Changgi Group is older than this age. The Yeonil Basalt, which Tateiwa described as Quaternary one shows different age ranging from Lower Miocene to Upper Miocene(cf. Jin et al., 1988: sample no. 93-33: $10.20{\pm}0.30Ma$). Therefore, the Yeonil Quarterary basalt should be revised and divided into different geologic epochs. Fourthly, Yeonil basalt of Tateiwa (1926) in the Eoil basin is correlated to the Yeonil basalt in the Changgi basin. Yoon (1989) intergrated both basalts as Eoil basaltic andesitic volcanic rocks or Eoil basalt (Yoon et al., 1991), and placed uppermost unit of the Changgi Group. As mentioned above the so-called Quarternary basalt in the Eoil basin are not extruded or intruaed simultaneously, but differentiatedly (14 Ma~25 Ma) so that they can not be classified as one unit. Fifthly, the Yongdong-ri formation of the Pomgogri Group is intruded by the Eoil basalt (911214-3) of 18.35~0.62 Ma age. Therefore, the deposition of the Pomgogri Group is completed before this age. Referring petrological characteristics, occurences, paleomagnetic data, and relationship to other Eoil basalts, it is most provable that this basalt is younger than two others. That means the Pomgogri Group is underlain by the Changgi Group. Sixthly, mineral composition of the basalts and andesitic rocks from the 4 basins show different ground mass and phenocryst. In volcanic rocks in the Pohang basin, phenocrysts are pyroxene and a small amount of biotite. Those of the Changgi basin is predominant by Labradorite, in the Eoil by bytownite-anorthite and a small amount pyroxene.

  • PDF