• 제목/요약/키워드: Pneumatic Model

검색결과 201건 처리시간 0.029초

신경회로망을 이용한 공압 서보실린더의 운동제어 (Motion Control of Pneumatic Servo Cylinder Using Neural Network)

  • 조승호
    • 한국정밀공학회지
    • /
    • 제25권2호
    • /
    • pp.140-147
    • /
    • 2008
  • This paper describes a Neural Network based PD control scheme for motion control of pneumatic servo cylinder. Pneumatic systems have inherent nonlinearities such as compressibility of air and nonlinear frictions present in cylinder. The conventional linear controller is limited in some applications where the affection of nonlinear factor is dominant. A self-excited oscillation method is applied to derive the dynamic design parameters of linear model. Based on the parameters thus identified, a PD feedback compensator is designed first and then a neural network is incorporated. The experiments of a trajectory tracking control using the proposed control scheme are performed and a significant reduction in tracking error is achieved by comparing with those of a PD control.

공기압 실린더의 쿠션특성에 관한 모델링 및 컴퓨터 시뮬레이션 (Computer Simulation and Modeling of Cushioning Pneumatic Cylinder)

  • 이상천
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제23권6호
    • /
    • pp.794-805
    • /
    • 1999
  • Pneumatic cushioning cylinders are commonly employed for vibration and shock control. A mathematical simulation model of a double acting pneumatic cushioning cylinder designed to absorb shock loads is presented which is based on the following assumptions; ideal equation of state isentropic flow through a port conservation of mass polytropic thermodynamics single degree of freedom piston dynamics and energy equivalent linear damping. These differential equation can be solved through numerical integration using the fourth order Runge-Kutta method. An experimental study was conducted to validate the results obtained by the numerical integra-tion technique. Simulated results show good agreement with experimental data. The computer simulation model presented here has been extremely useful not only in understanding the has been extremely useful not only in understanding the basic cushioning but also in evaluating different designs.

  • PDF

직동식 공압서보밸브의 Force Motor 설계 및 성능시험 (Design and Performance Test of the Force Motor for Direct Drive-type Pneumatic Servo Valve)

  • 이원희;김동수;박상운
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.836-839
    • /
    • 2003
  • A pneumatic servo valve which is widely applied in industrial field. And It is consist of force motor, spool & sleeve and servo controller. In this study. we developed the force motor which is consume to low power for a pneumatic servo valve. We could reduce the number of turn of the solenoid by using ferromagnetic permanent magnet and took different direction of each other using one coil instead of two coil. we modeled a system consisting of various electro-mechanical subsystems. The appropriateness of the model was verified by simulation. The simulation model resolved the motion of spool, the winding current and the magnetic force. Also, we calculated the displacement and velocity of the spool, flux contour line, b vector. flux density. flux linkage, back EMF etc.

  • PDF

기체 전달 관로에 있어서 압력 전파의 주파수 응답에 대한 부하 임피던스의 영향 (The Effect of Load Impedances on the Frequency Response of Pressure Propagation in the Pneumatic Transmission Line)

  • 윤선주;손병진
    • 설비공학논문집
    • /
    • 제6권4호
    • /
    • pp.344-353
    • /
    • 1994
  • This study numerically analyzed the dynamic characteristics of the frequency response on the pneumatic transmission line with load impedances. The pressure transfer function is represented by the distributed parameter line model. To validate the mathematical approximations of Bessel function ratios, the results of frequency response in a blocked line were compared with those obtained by the Infinite-product, Brown's and Square-root approximations. Special emphasis was given to the frequency response characteristics on the pneumatic transmission line with load impedances. Computations were carried out for the wide range of parameters in terms of load capacitance ratio and load resistance ratio. The present results indicated that the theoretical model is capable of accurately predicting the frequency response characteristics for any configuration of a fluid transmission line.

  • PDF

공압 NC축의 신경회로망 결합형 PID 제어 (Neural Network Based PID Control for Pneumatic NC Axes)

  • 박래서;조승호
    • 대한기계학회논문집A
    • /
    • 제30권2호
    • /
    • pp.105-111
    • /
    • 2006
  • This paper describes a Neural Network based PID control scheme for pneumatic NC axes. Pneumatic systems have inherent nonlinearities such as compressibility of air and nonlinear frictions present in cylinder. The conventional PID controller is limited in some applications where the affection of nonlinear factor is dominant. A self-excited oscillation method is applied to derive the dynamic design parameters of linear model. The gains of PID controller are determined using a self tuning scheme. The experiments of a trajectory tracking control using the proposed control scheme are performed and a significant reduction in tracking error is achieved by comparing with those of a PID control.

관로의 전달 특성을 고려한 공기압 실린더 위치 제어계의 모델링 (Modeling of a Pneumatic Cylinder Position Control system Considering Transfer Characteristics of a Transmission Line)

  • 장지성;강보식;지상원
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 추계학술대회
    • /
    • pp.731-736
    • /
    • 2004
  • In this study, a linearized model of pneumatic cylinder position control system including transmission line is proposed. The transmission line using compressible fluid has a nonlinear transfer characteristics because that the frequency response of it is changed by the flowing state of the fluid. But, when the pressure difference between both sides of transmission line is low, the effect of resonance characteristics of it under high frequency range can be neglected because of the friction force and low pass characteristics of the position control system. Therefore, the transmission line can be modeled by second order transfer function and the natural frequency, damping ratio and gain are changed by the diameter and length of it. The effectiveness of the proposed model is proved by comparison of simulation results using proposed model with experimental results and simulation results using conventional model.

  • PDF

로봇 케이블의 동적 특성에 관한 연구 (A Study on Dynamic Characteristic of Robot Cables)

  • 김진규;김재봉;강대선;최웅섭;김문영;이상범;임홍재
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2014년도 춘계학술대회 논문집
    • /
    • pp.495-499
    • /
    • 2014
  • In this study, the finite element modeling for the signal cable and pneumatic hose of the industrial robot is developed. The modulus of elasticity of signal cable and pneumatic hose is predicted by deflection test. Finite element model for the signal cable and pneumatic hose is developed by using the modulus of elasticity obtained from the tests. The developed finite element model is estimated through the vibration analysis. This study shows that the developed finite element model can be effectively utilized in the dynamic analysis.

  • PDF

Accelerating CFD-DEM simulation of dilute pneumatic conveying with bends

  • Du, Jun;Hu, Guoming;Fang, Ziqiang;Gui, Wenjie
    • International Journal of Fluid Machinery and Systems
    • /
    • 제8권2호
    • /
    • pp.84-93
    • /
    • 2015
  • The computational cost is expensive for CFD-DEM simulation, a larger time step and a simplified CFD-DEM model can be used to accelerate the simulation. The relationship between stiffness and overlap in non-linear Hertzian model is examined, and a reasonable time step is determined by a new single particle test. The simplified model is used to simulate dilute pneumatic conveying with different types of bends, and its applicability is verified by compared with the traditional model. They are good agreement in horizontal-vertical case and vertical-horizontal case, and show a significant differences in horizontal-horizontal case. But the key features of particle rope formed in different types of bends can be obtained by both models.

공압 서보실린더의 신경회로망 결합형 적응제어 (Adaptive Control Incorporating Neural Network for a Pneumatic Servo Cylinder)

  • 장윤성;조승호
    • 대한기계학회논문집A
    • /
    • 제29권1호
    • /
    • pp.88-95
    • /
    • 2005
  • This paper presents a design scheme of model reference adaptive control incorporating a Neural Network for a pneumatic servo system. The parameters of discrete-time model of plant are estimated by using the recursive least square method. Neural Network is utilized in order to compensate the nonlinear nature of plant such as compressibility of air and frictions present in cylinder. The experiment of a trajectory tracking control using the proposed control scheme has been performed and its effectiveness has been proved by comparing with the results of a model reference adaptive control.

공동현상을 고려한 유공압 방식 착륙장치의 낙하특성에 관한 연구 (Effects of Cavitation and Drop Characteristics on Oleo-Pneumatic Type Landing Gear Systems)

  • 한재도;이영신;강연식;안오성;공정표
    • 한국항공우주학회지
    • /
    • 제37권2호
    • /
    • pp.193-200
    • /
    • 2009
  • 본 논문에서는 소형항공기용 유-공압 방식(oleo pneumatic type) 착륙장치의 낙하특성을 연구하였다. 본 연구대상의 착륙장치의 방식은 미터링 핀이 없는 단순 유-공압 방식댐퍼 이다. 일반적으로 유-공압 방식의 착륙장치는 단순한 구조로 되어 있어 무게가 가볍고 좋은 충격흡수 효율을 가진다. 낙하해석을 위하여 상용 코드인 MSC ADAMS를 이용하여 모델링 하였다. 모델링한 후에 해석과 시험결과의 상사성을 검증하기 위하여 일련의 시험이 수행되었다. 시험과 해석결과의 보다 좋은 일치성을 얻기 위하여 해석 모델에 공동현상 효과가 고려되었다. 공동현상을 고려한 착륙장치의 동적 거동 시뮬레이션 결과들이 현저하게 개선되었으며 시험결과와 보다 잘 일치함을 확인하였다. 이러한 과정을 통해 신뢰성이 검증된 해석모델을 이용하여 경사면에 대해서 해석적 방법을 통해 낙하특성을 예측하였다.